Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high...Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.展开更多
Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ...Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively.展开更多
A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq...A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.展开更多
This paper focuses on improving the detection performance of spectrum sensing in cognitive radio(CR) networks under complicated electromagnetic environment. Some existing fast spectrum sensing algorithms cannot get sp...This paper focuses on improving the detection performance of spectrum sensing in cognitive radio(CR) networks under complicated electromagnetic environment. Some existing fast spectrum sensing algorithms cannot get specific features of the licensed users'(LUs') signal, thus they cannot be applied in this situation without knowing the power of noise. On the other hand some algorithms that yield specific features are too complicated. In this paper, an algorithm based on the cyclostationary feature detection and theory of Hilbert transformation is proposed. Comparing with the conventional cyclostationary feature detection algorithm, this approach is more flexible i.e. it can flexibly change the computational complexity according to current electromagnetic environment by changing its sampling times and the step size of cyclic frequency. Results of simulation indicate that this approach can flexibly detect the feature of received signal and provide satisfactory detection performance compared to existing approaches in low Signal-to-noise Ratio(SNR) situations.展开更多
Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes...Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.展开更多
The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.I...The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.Inspired by the great progress of Transformer,we propose a novel general and robust voxel feature encoder for 3D object detection based on the traditional Transformer.We first investigate the permutation invariance of sequence data of the self-attention and apply it to point cloud processing.Then we construct a voxel feature layer based on the self-attention to adaptively learn local and robust context of a voxel according to the spatial relationship and context information exchanging between all points within the voxel.Lastly,we construct a general voxel feature learning framework with the voxel feature layer as the core for 3D object detection.The voxel feature with Transformer(VFT)can be plugged into any other voxel-based 3D object detection framework easily,and serves as the backbone for voxel feature extractor.Experiments results on the KITTI dataset demonstrate that our method achieves the state-of-the-art performance on 3D object detection.展开更多
In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)...In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)feature extraction technique.First,dimensionality of the original imbalanced data is reduced using MDS so that distances between any two different samples are preserved as well as possible.Second,a novel OPCE algorithm is applied to classify imbalanced samples by placing optimised observation points in a low-dimensional data space.Third,optimization of the observation point mappings is carried out to obtain a reliable assessment of the unknown samples.Exhaustive experiments have been conducted to evaluate the feasibility,rationality,and effectiveness of the proposed OPCE algorithm using seven benchmark HDIC data sets.Experimental results show that(1)the OPCE algorithm can be trained faster on low-dimensional imbalanced data than on high-dimensional data;(2)the OPCE algorithm can correctly identify samples as the number of optimised observation points is increased;and(3)statistical analysis reveals that OPCE yields better HDIC performances on the selected data sets in comparison with eight other HDIC algorithms.This demonstrates that OPCE is a viable algorithm to deal with HDIC problems.展开更多
To meet the needs in the fundus examination,including outlook widening,pathology tracking,etc.,this paper describes a robust feature-based method for fully-automatic mosaic of the curved human retinal images photograp...To meet the needs in the fundus examination,including outlook widening,pathology tracking,etc.,this paper describes a robust feature-based method for fully-automatic mosaic of the curved human retinal images photographed by a fundus microscope. The kernel of this new algorithm is the scale-,rotation-and illumination-invariant interest point detector & feature descriptor-Scale-Invariant Feature Transform. When matched interest points according to second-nearest-neighbor strategy,the parameters of the model are estimated using the correct matches of the interest points,extracted by a new inlier identification scheme based on Sampson distance from putative sets. In order to preserve image features,bilinear warping and multi-band blending techniques are used to create panoramic retinal images. Experiments show that the proposed method works well with rejection error in 0.3 pixels,even for those cases where the retinal images without discernable vascular structure in contrast to the state-of-the-art algorithms.展开更多
As more business transactions and information services have been implemented via communication networks,both personal and organization assets encounter a higher risk of attacks.To safeguard these,a perimeter defence l...As more business transactions and information services have been implemented via communication networks,both personal and organization assets encounter a higher risk of attacks.To safeguard these,a perimeter defence likeNIDS(network-based intrusion detection system)can be effective for known intrusions.There has been a great deal of attention within the joint community of security and data science to improve machine-learning based NIDS such that it becomes more accurate for adversarial attacks,where obfuscation techniques are applied to disguise patterns of intrusive traffics.The current research focuses on non-payload connections at the TCP(transmission control protocol)stack level that is applicable to different network applications.In contrary to the wrapper method introduced with the benchmark dataset,three new filter models are proposed to transform the feature space without knowledge of class labels.These ECT(ensemble clustering based transformation)techniques,i.e.,ECT-Subspace,ECT-Noise and ECT-Combined,are developed using the concept of ensemble clustering and three different ensemble generation strategies,i.e.,random feature subspace,feature noise injection and their combinations.Based on the empirical study with published dataset and four classification algorithms,new models usually outperform that original wrapper and other filter alternatives found in the literature.This is similarly summarized from the first experiment with basic classification of legitimate and direct attacks,and the second that focuses on recognizing obfuscated intrusions.In addition,analysis of algorithmic parameters,i.e.,ensemble size and level of noise,is provided as a guideline for a practical use.展开更多
Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the a...Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the ancient scripts,but lack of standard dataset for such scripts is a major constraint.Although many scholars and researchers have captured and uploaded inscription images on various websites,manual searching,downloading and extraction of these images is tedious and error prone.Web search queries return a vast number of irrelevant results,and manually extracting images for a specific script is not scalable.This paper proposes a novelmultistage system to identify the specific set of script images from a large set of images downloaded from web sources.The proposed system combines the two most important pattern matching techniques-Scale Invariant Feature Transform(SIFT)and Template matching,in a sequential pipeline,and by using the key strengths of each technique,the system can discard irrelevant images while retaining a specific type of images.展开更多
The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SI...The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SIFT) is proposed,but its computational complexity and complication seriously affect the efficiency of the algorithm.In order to solve this problem,SIFT algorithm is proposed based on principal component analysis(PCA) dimensionality reduction.The algorithm first uses PCA algorithm,which has the function of screening feature points,to filter the feature points extracted in advance by the SIFT algorithm;then the high-dimensional data is projected into the low-dimensional space to remove the redundant feature points,thereby changing the way of generating feature descriptors and finally achieving the effect of dimensionality reduction.In this paper,through experiments on the public ORL face database,the dimension of SIFT is reduced to 20 dimensions,which improves the efficiency of face extraction;the comparison of several experimental results is completed and analyzed to verify the superiority of the improved algorithm.展开更多
On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits o...On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI.展开更多
Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based ...Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based rendering (IBR). Color correction between views is necessary to use multi-view systems in IBR to make audiences feel comfortable when views are switched or when a free viewpoint video is displayed. Color correction usually involves two steps: the first is to adjust camera parameters such as gain, brightness, and aperture before capture, and the second is to modify captured videos through image processing. This paper deals with the latter, which does not need a color pattern board. The proposed method uses scale invariant feature transform (SIFT) to detect correspondences, treats RGB channels independently, calculates lookup tables with an energy-minimization approach, and corrects captured video with these tables. The experimental results reveal that this approach works well.展开更多
This paper presents a pure vision based technique for 3D reconstruction of planet terrain. The reconstruction accuracy depends ultimately on an optimization technique known as 'bundle adjustment'. In vision te...This paper presents a pure vision based technique for 3D reconstruction of planet terrain. The reconstruction accuracy depends ultimately on an optimization technique known as 'bundle adjustment'. In vision techniques, the translation is only known up to a scale factor, and a single scale factor is assumed for the whole sequence of images if only one camera is used. If an extra camera is available, stereo vision based reconstruction can be obtained by binocular views. If the baseline of the stereo setup is known, the scale factor problem is solved. We found that direct application of classical bundle adjustment on the constraints inherent between the binocular views has not been tested. Our method incorporated this constraint into the conventional bundle adjustment method. This special binocular bundle adjustment has been performed on image sequences similar to planet terrain circumstances. Experimental results show that our special method enhances not only the localization accuracy, but also the terrain mapping quality.展开更多
To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, ...To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, 3 rotation-invariant concentric-ring grids around the key-point location are used instead of 16 square grids used in the original SIFT. Then, 10 orientations are accumulated for each grid, which results in a 30-dimension descriptor. In descriptor matching, rough rejection mismatches is proposed based on the difference of grey information between matching points. The per- formance of the proposed method is tested for image mosaic on simulated and real-worid images. Experimental results show that the M-SIFT descriptor inherits the SIFT' s ability of being invariant to image scale and rotation, illumination change and affine distortion. Besides the time cost of feature extraction is reduced by 50% compared with the original SIFT. And the rough rejection mismatches can reject at least 70% of mismatches. The results also demonstrate that the performance of the pro- posed M-SIFT method is superior to other improved SIFT methods in speed and robustness.展开更多
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera...Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.展开更多
Scale Invariant Feature Transform (SIFT) algorithm is a widely used computer vision algorithm that detects and extracts local feature descriptors from images. SIFT is computationally intensive, making it infeasible fo...Scale Invariant Feature Transform (SIFT) algorithm is a widely used computer vision algorithm that detects and extracts local feature descriptors from images. SIFT is computationally intensive, making it infeasible for single threaded im-plementation to extract local feature descriptors for high-resolution images in real time. In this paper, an approach to parallelization of the SIFT algorithm is demonstrated using NVIDIA’s Graphics Processing Unit (GPU). The parallel-ization design for SIFT on GPUs is divided into two stages, a) Algorithm de-sign-generic design strategies which focuses on data and b) Implementation de-sign-architecture specific design strategies which focuses on optimally using GPU resources for maximum occupancy. Increasing memory latency hiding, eliminating branches and data blocking achieve a significant decrease in aver-age computational time. Furthermore, it is observed via Paraver tools that our approach to parallelization while optimizing for maximum occupancy allows GPU to execute memory bound SIFT algorithm at optimal levels.展开更多
With the advancement of computer vision techniques in surveillance systems,the need for more proficient,intelligent,and sustainable facial expressions and age recognition is necessary.The main purpose of this study is...With the advancement of computer vision techniques in surveillance systems,the need for more proficient,intelligent,and sustainable facial expressions and age recognition is necessary.The main purpose of this study is to develop accurate facial expressions and an age recognition system that is capable of error-free recognition of human expression and age in both indoor and outdoor environments.The proposed system first takes an input image pre-process it and then detects faces in the entire image.After that landmarks localization helps in the formation of synthetic face mask prediction.A novel set of features are extracted and passed to a classifier for the accurate classification of expressions and age group.The proposed system is tested over two benchmark datasets,namely,the Gallagher collection person dataset and the Images of Groups dataset.The system achieved remarkable results over these benchmark datasets about recognition accuracy and computational time.The proposed system would also be applicable in different consumer application domains such as online business negotiations,consumer behavior analysis,E-learning environments,and emotion robotics.展开更多
An Unmanned Aircraft System (UAS) is an aircraft or ground station that can be either remote controlled manually or is capable of flying autonomously under the guidance of pre-programmed Global Positioning System (...An Unmanned Aircraft System (UAS) is an aircraft or ground station that can be either remote controlled manually or is capable of flying autonomously under the guidance of pre-programmed Global Positioning System (GPS) waypoint flight plans or more complex onboard intelligent systems. The UAS aircrafts have recently found extensive applications in military reconnaissance and surveillance, homeland security, precision agriculture, fire monitoring and analysis, and other different kinds of aids needed in disasters. Through surveillance videos captured by a UAS digital imaging payload over the interest areas, the corresponding UAS missions can be conducted. In this paper, the authors present an effective method to detect and extract architectural buildings under rural environment from UAS video sequences. The SIFT points are chosen as image features. The planar homography is adopted as the motion model between different image frames. The proposed algorithm is tested on real UAS video data.展开更多
To solve the problem of wide-baseline stereo image matching based on multiple cameras,the paper puts forward an image matching method of combining maximally stable extremal regions (MSER) with Scale Invariant Feature ...To solve the problem of wide-baseline stereo image matching based on multiple cameras,the paper puts forward an image matching method of combining maximally stable extremal regions (MSER) with Scale Invariant Feature Transform (SIFT) . It uses MSER to detect feature regions instead of difference of Gaussian. After fitted into elliptical regions,those regions will be normalized into unity circles and represented with SIFT descriptors. The method estimates fundamental matrix and removes outliers by auto-maximum a posteriori sample consensus after initial matching feature points. The experimental results indicate that the method is robust to viewpoint changes,can reduce computational complexity effectively and improve matching accuracy.展开更多
基金supported by National Key R&D Program of China[2022YFC2402400]the National Natural Science Foundation of China[Grant No.62275062]Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology[Grant No.2020B121201010-4].
文摘Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.
文摘Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively.
基金supported by the National Natural Science Foundation of China (6117212711071002)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (20113401110006)the Innovative Research Team of 211 Project in Anhui University (KJTD007A)
文摘A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.
基金sponsored by National Basic Research Program of China (973 Program, No. 2013CB329003)National Natural Science Foundation of China (No. 91438205)+1 种基金China Postdoctoral Science Foundation (No. 2011M500664)Open Research fund Program of Key Lab. for Spacecraft TT&C and Communication, Ministry of Education, China (No.CTTC-FX201305)
文摘This paper focuses on improving the detection performance of spectrum sensing in cognitive radio(CR) networks under complicated electromagnetic environment. Some existing fast spectrum sensing algorithms cannot get specific features of the licensed users'(LUs') signal, thus they cannot be applied in this situation without knowing the power of noise. On the other hand some algorithms that yield specific features are too complicated. In this paper, an algorithm based on the cyclostationary feature detection and theory of Hilbert transformation is proposed. Comparing with the conventional cyclostationary feature detection algorithm, this approach is more flexible i.e. it can flexibly change the computational complexity according to current electromagnetic environment by changing its sampling times and the step size of cyclic frequency. Results of simulation indicate that this approach can flexibly detect the feature of received signal and provide satisfactory detection performance compared to existing approaches in low Signal-to-noise Ratio(SNR) situations.
基金Project(XDA06020300)supported by the"Strategic Priority Research Program"of the Chinese Academy of SciencesProject(12511501700)supported by the Research on the Key Technology of Internet of Things for Urban Community Safety Based on Video Sensor networks
文摘Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.
基金National Natural Science Foundation of China(No.61806006)Innovation Program for Graduate of Jiangsu Province(No.KYLX160-781)University Superior Discipline Construction Project of Jiangsu Province。
文摘The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.Inspired by the great progress of Transformer,we propose a novel general and robust voxel feature encoder for 3D object detection based on the traditional Transformer.We first investigate the permutation invariance of sequence data of the self-attention and apply it to point cloud processing.Then we construct a voxel feature layer based on the self-attention to adaptively learn local and robust context of a voxel according to the spatial relationship and context information exchanging between all points within the voxel.Lastly,we construct a general voxel feature learning framework with the voxel feature layer as the core for 3D object detection.The voxel feature with Transformer(VFT)can be plugged into any other voxel-based 3D object detection framework easily,and serves as the backbone for voxel feature extractor.Experiments results on the KITTI dataset demonstrate that our method achieves the state-of-the-art performance on 3D object detection.
基金National Natural Science Foundation of China,Grant/Award Number:61972261Basic Research Foundations of Shenzhen,Grant/Award Numbers:JCYJ20210324093609026,JCYJ20200813091134001。
文摘In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)feature extraction technique.First,dimensionality of the original imbalanced data is reduced using MDS so that distances between any two different samples are preserved as well as possible.Second,a novel OPCE algorithm is applied to classify imbalanced samples by placing optimised observation points in a low-dimensional data space.Third,optimization of the observation point mappings is carried out to obtain a reliable assessment of the unknown samples.Exhaustive experiments have been conducted to evaluate the feasibility,rationality,and effectiveness of the proposed OPCE algorithm using seven benchmark HDIC data sets.Experimental results show that(1)the OPCE algorithm can be trained faster on low-dimensional imbalanced data than on high-dimensional data;(2)the OPCE algorithm can correctly identify samples as the number of optimised observation points is increased;and(3)statistical analysis reveals that OPCE yields better HDIC performances on the selected data sets in comparison with eight other HDIC algorithms.This demonstrates that OPCE is a viable algorithm to deal with HDIC problems.
基金Program for NewCentury Excellent Talents in UniversityGrant number:50051+1 种基金The Key Project for Technology Research of Ministry Education of ChinaCrant number:106030
文摘To meet the needs in the fundus examination,including outlook widening,pathology tracking,etc.,this paper describes a robust feature-based method for fully-automatic mosaic of the curved human retinal images photographed by a fundus microscope. The kernel of this new algorithm is the scale-,rotation-and illumination-invariant interest point detector & feature descriptor-Scale-Invariant Feature Transform. When matched interest points according to second-nearest-neighbor strategy,the parameters of the model are estimated using the correct matches of the interest points,extracted by a new inlier identification scheme based on Sampson distance from putative sets. In order to preserve image features,bilinear warping and multi-band blending techniques are used to create panoramic retinal images. Experiments show that the proposed method works well with rejection error in 0.3 pixels,even for those cases where the retinal images without discernable vascular structure in contrast to the state-of-the-art algorithms.
文摘As more business transactions and information services have been implemented via communication networks,both personal and organization assets encounter a higher risk of attacks.To safeguard these,a perimeter defence likeNIDS(network-based intrusion detection system)can be effective for known intrusions.There has been a great deal of attention within the joint community of security and data science to improve machine-learning based NIDS such that it becomes more accurate for adversarial attacks,where obfuscation techniques are applied to disguise patterns of intrusive traffics.The current research focuses on non-payload connections at the TCP(transmission control protocol)stack level that is applicable to different network applications.In contrary to the wrapper method introduced with the benchmark dataset,three new filter models are proposed to transform the feature space without knowledge of class labels.These ECT(ensemble clustering based transformation)techniques,i.e.,ECT-Subspace,ECT-Noise and ECT-Combined,are developed using the concept of ensemble clustering and three different ensemble generation strategies,i.e.,random feature subspace,feature noise injection and their combinations.Based on the empirical study with published dataset and four classification algorithms,new models usually outperform that original wrapper and other filter alternatives found in the literature.This is similarly summarized from the first experiment with basic classification of legitimate and direct attacks,and the second that focuses on recognizing obfuscated intrusions.In addition,analysis of algorithmic parameters,i.e.,ensemble size and level of noise,is provided as a guideline for a practical use.
文摘Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the ancient scripts,but lack of standard dataset for such scripts is a major constraint.Although many scholars and researchers have captured and uploaded inscription images on various websites,manual searching,downloading and extraction of these images is tedious and error prone.Web search queries return a vast number of irrelevant results,and manually extracting images for a specific script is not scalable.This paper proposes a novelmultistage system to identify the specific set of script images from a large set of images downloaded from web sources.The proposed system combines the two most important pattern matching techniques-Scale Invariant Feature Transform(SIFT)and Template matching,in a sequential pipeline,and by using the key strengths of each technique,the system can discard irrelevant images while retaining a specific type of images.
基金Supported by the National Natural Science Foundation of China (No.61571222)the Natural Science Research Program of Higher Education Jiangsu Province (No.19KJD520005)+1 种基金Qing Lan Project of Jiangsu Province (Su Teacher’s Letter 2021 No.11)Jiangsu Graduate Scientific Research Innovation Program (No.KYCX21_1944)。
文摘The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SIFT) is proposed,but its computational complexity and complication seriously affect the efficiency of the algorithm.In order to solve this problem,SIFT algorithm is proposed based on principal component analysis(PCA) dimensionality reduction.The algorithm first uses PCA algorithm,which has the function of screening feature points,to filter the feature points extracted in advance by the SIFT algorithm;then the high-dimensional data is projected into the low-dimensional space to remove the redundant feature points,thereby changing the way of generating feature descriptors and finally achieving the effect of dimensionality reduction.In this paper,through experiments on the public ORL face database,the dimension of SIFT is reduced to 20 dimensions,which improves the efficiency of face extraction;the comparison of several experimental results is completed and analyzed to verify the superiority of the improved algorithm.
基金supported by the National High Technology Research and Development Program (863 Program) (2010AA7080302)
文摘On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI.
文摘Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based rendering (IBR). Color correction between views is necessary to use multi-view systems in IBR to make audiences feel comfortable when views are switched or when a free viewpoint video is displayed. Color correction usually involves two steps: the first is to adjust camera parameters such as gain, brightness, and aperture before capture, and the second is to modify captured videos through image processing. This paper deals with the latter, which does not need a color pattern board. The proposed method uses scale invariant feature transform (SIFT) to detect correspondences, treats RGB channels independently, calculates lookup tables with an energy-minimization approach, and corrects captured video with these tables. The experimental results reveal that this approach works well.
基金the National Natural Science Foundation of China (Nos. 60505017 and 60534070)the Science Planning Project of Zhejiang Province, China (No. 2005C14008)
文摘This paper presents a pure vision based technique for 3D reconstruction of planet terrain. The reconstruction accuracy depends ultimately on an optimization technique known as 'bundle adjustment'. In vision techniques, the translation is only known up to a scale factor, and a single scale factor is assumed for the whole sequence of images if only one camera is used. If an extra camera is available, stereo vision based reconstruction can be obtained by binocular views. If the baseline of the stereo setup is known, the scale factor problem is solved. We found that direct application of classical bundle adjustment on the constraints inherent between the binocular views has not been tested. Our method incorporated this constraint into the conventional bundle adjustment method. This special binocular bundle adjustment has been performed on image sequences similar to planet terrain circumstances. Experimental results show that our special method enhances not only the localization accuracy, but also the terrain mapping quality.
基金Supported by the National Natural Science Foundation of China(60905012)
文摘To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, 3 rotation-invariant concentric-ring grids around the key-point location are used instead of 16 square grids used in the original SIFT. Then, 10 orientations are accumulated for each grid, which results in a 30-dimension descriptor. In descriptor matching, rough rejection mismatches is proposed based on the difference of grey information between matching points. The per- formance of the proposed method is tested for image mosaic on simulated and real-worid images. Experimental results show that the M-SIFT descriptor inherits the SIFT' s ability of being invariant to image scale and rotation, illumination change and affine distortion. Besides the time cost of feature extraction is reduced by 50% compared with the original SIFT. And the rough rejection mismatches can reject at least 70% of mismatches. The results also demonstrate that the performance of the pro- posed M-SIFT method is superior to other improved SIFT methods in speed and robustness.
基金supported by the National Natural Science Foundation of China(61271315)the State Scholarship Fund of China
文摘Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.
文摘Scale Invariant Feature Transform (SIFT) algorithm is a widely used computer vision algorithm that detects and extracts local feature descriptors from images. SIFT is computationally intensive, making it infeasible for single threaded im-plementation to extract local feature descriptors for high-resolution images in real time. In this paper, an approach to parallelization of the SIFT algorithm is demonstrated using NVIDIA’s Graphics Processing Unit (GPU). The parallel-ization design for SIFT on GPUs is divided into two stages, a) Algorithm de-sign-generic design strategies which focuses on data and b) Implementation de-sign-architecture specific design strategies which focuses on optimally using GPU resources for maximum occupancy. Increasing memory latency hiding, eliminating branches and data blocking achieve a significant decrease in aver-age computational time. Furthermore, it is observed via Paraver tools that our approach to parallelization while optimizing for maximum occupancy allows GPU to execute memory bound SIFT algorithm at optimal levels.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1D1A1A02085645)Also,this work was supported by the KoreaMedical Device Development Fund grant funded by the Korean government(the Ministry of Science and ICT,the Ministry of Trade,Industry and Energy,the Ministry of Health&Welfare,theMinistry of Food and Drug Safety)(Project Number:202012D05-02).
文摘With the advancement of computer vision techniques in surveillance systems,the need for more proficient,intelligent,and sustainable facial expressions and age recognition is necessary.The main purpose of this study is to develop accurate facial expressions and an age recognition system that is capable of error-free recognition of human expression and age in both indoor and outdoor environments.The proposed system first takes an input image pre-process it and then detects faces in the entire image.After that landmarks localization helps in the formation of synthetic face mask prediction.A novel set of features are extracted and passed to a classifier for the accurate classification of expressions and age group.The proposed system is tested over two benchmark datasets,namely,the Gallagher collection person dataset and the Images of Groups dataset.The system achieved remarkable results over these benchmark datasets about recognition accuracy and computational time.The proposed system would also be applicable in different consumer application domains such as online business negotiations,consumer behavior analysis,E-learning environments,and emotion robotics.
文摘An Unmanned Aircraft System (UAS) is an aircraft or ground station that can be either remote controlled manually or is capable of flying autonomously under the guidance of pre-programmed Global Positioning System (GPS) waypoint flight plans or more complex onboard intelligent systems. The UAS aircrafts have recently found extensive applications in military reconnaissance and surveillance, homeland security, precision agriculture, fire monitoring and analysis, and other different kinds of aids needed in disasters. Through surveillance videos captured by a UAS digital imaging payload over the interest areas, the corresponding UAS missions can be conducted. In this paper, the authors present an effective method to detect and extract architectural buildings under rural environment from UAS video sequences. The SIFT points are chosen as image features. The planar homography is adopted as the motion model between different image frames. The proposed algorithm is tested on real UAS video data.
基金Sponsored by the Scientific Research Common Program of Beijing Municipal Commission of Education(Grant No. KM201010772021the National High Technology Research and Development Program of China (863 Program) (Grant No. 2006AA74105)the National Natural Science Foundation of Chi-na(Grant No. 60803103)
文摘To solve the problem of wide-baseline stereo image matching based on multiple cameras,the paper puts forward an image matching method of combining maximally stable extremal regions (MSER) with Scale Invariant Feature Transform (SIFT) . It uses MSER to detect feature regions instead of difference of Gaussian. After fitted into elliptical regions,those regions will be normalized into unity circles and represented with SIFT descriptors. The method estimates fundamental matrix and removes outliers by auto-maximum a posteriori sample consensus after initial matching feature points. The experimental results indicate that the method is robust to viewpoint changes,can reduce computational complexity effectively and improve matching accuracy.