针对传统起停车过程分析采用短时傅里叶变换提取瞬时幅值及相位会损失瞬变信息的不足,用弗德卡曼阶比跟踪原理(Vold-Kalman Filter Based Order Tracking,VKF-OT)结合全息谱原理,提出新的转子起停车故障特征提取方法。由转子起停车瞬态...针对传统起停车过程分析采用短时傅里叶变换提取瞬时幅值及相位会损失瞬变信息的不足,用弗德卡曼阶比跟踪原理(Vold-Kalman Filter Based Order Tracking,VKF-OT)结合全息谱原理,提出新的转子起停车故障特征提取方法。由转子起停车瞬态响应数据中提取随转速变化的阶比分量,通过各阶分量复包络直接求幅值、相位,能克服傅里叶变换的平均效应,保留转子振动瞬变信息;通过VKF-OT集成转子截面振动信息,结合全息谱理论绘制阶比全息瀑布图,提取转子起停车状态的故障特征,并用于起停车瞬态动平衡。结果表明,该方法可有效提取转子典型故障特征、降低转子系统一阶临界振动。展开更多
Gears alternately mesh and detach in driving process, and then workingconditions of gears are alternately changing, so they are easy to be spalled and worn. But becauseof the effect of additive gaussian measurement no...Gears alternately mesh and detach in driving process, and then workingconditions of gears are alternately changing, so they are easy to be spalled and worn. But becauseof the effect of additive gaussian measurement noises, the signal-to-noises ratio is low; theirfault features are difficult to extract. This study aims to propose an approach of gear faultsclassification, using the cumulants and support vector machines. The cumulants can eliminate theadditive gaussian noises, boost the signal-to-noises ratio. Generalisation of support vectormachines as classifier, which is employed structural risk minimisation principle, is superior tothat of conventional neural networks, which is employed traditional empirical risk minimisationprinciple. Support vector machines as the classifier, and the third and fourth order cumulants asinput, gears faults are successfully recognized. The experimental results show that the method offault classification combining cumulants with support vector machines is very effective.展开更多
文摘针对传统起停车过程分析采用短时傅里叶变换提取瞬时幅值及相位会损失瞬变信息的不足,用弗德卡曼阶比跟踪原理(Vold-Kalman Filter Based Order Tracking,VKF-OT)结合全息谱原理,提出新的转子起停车故障特征提取方法。由转子起停车瞬态响应数据中提取随转速变化的阶比分量,通过各阶分量复包络直接求幅值、相位,能克服傅里叶变换的平均效应,保留转子振动瞬变信息;通过VKF-OT集成转子截面振动信息,结合全息谱理论绘制阶比全息瀑布图,提取转子起停车状态的故障特征,并用于起停车瞬态动平衡。结果表明,该方法可有效提取转子典型故障特征、降低转子系统一阶临界振动。
基金This project is supported by 95 Pandeng Preselect Project (No.PD9521908)and 973 Project(No.G199802320).
文摘Gears alternately mesh and detach in driving process, and then workingconditions of gears are alternately changing, so they are easy to be spalled and worn. But becauseof the effect of additive gaussian measurement noises, the signal-to-noises ratio is low; theirfault features are difficult to extract. This study aims to propose an approach of gear faultsclassification, using the cumulants and support vector machines. The cumulants can eliminate theadditive gaussian noises, boost the signal-to-noises ratio. Generalisation of support vectormachines as classifier, which is employed structural risk minimisation principle, is superior tothat of conventional neural networks, which is employed traditional empirical risk minimisationprinciple. Support vector machines as the classifier, and the third and fourth order cumulants asinput, gears faults are successfully recognized. The experimental results show that the method offault classification combining cumulants with support vector machines is very effective.