期刊文献+
共找到599篇文章
< 1 2 30 >
每页显示 20 50 100
Terrorism Attack Classification Using Machine Learning: The Effectiveness of Using Textual Features Extracted from GTD Dataset
1
作者 Mohammed Abdalsalam Chunlin Li +1 位作者 Abdelghani Dahou Natalia Kryvinska 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1427-1467,共41页
One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelli... One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier. 展开更多
关键词 Artificial intelligence machine learning natural language processing data analytic DistilBERT feature extraction terrorism classification GTD dataset
下载PDF
Diesel Engine Valve Clearance Fault Diagnosis Based on Features Extraction Techniques and FastICA-SVM 被引量:9
2
作者 Ya-Bing Jing Chang-Wen Liu +3 位作者 Feng-Rong Bi Xiao-Yang Bi Xia Wang Kang Shao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期991-1007,共17页
Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying ... Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying fea- tures. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastlCA-SVM achieves higher classification accuracy and makes better general- ization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastlCA- SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of fea- ture extraction and the fault diagnosis of diesel engines. 展开更多
关键词 Feature extraction Diesel engine valve train FastlCA PCA Support vector machine
下载PDF
Pulse-to-pulse periodic signal sorting features and feature extraction in radar emitter pulse sequences 被引量:5
3
作者 Qiang Guo Zhenshen Qu Changhong Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期382-389,共8页
A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing ch... A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting. 展开更多
关键词 signal sorting fractal geometry Hilbert-Huang transform(HHT) G feature extraction.
下载PDF
Automatically extracting sheet-metal features from solid model 被引量:3
4
作者 刘志坚 李建军 +2 位作者 王义林 李材元 肖祥芷 《Journal of Zhejiang University Science》 EI CSCD 2004年第11期1456-1465,共10页
With the development of modern industry, sheet-metal parts in mass production have been widely applied in mechanical, communication, electronics, and light industries in recent decades; but the advances in sheet-metal... With the development of modern industry, sheet-metal parts in mass production have been widely applied in mechanical, communication, electronics, and light industries in recent decades; but the advances in sheet-metal part design and manufacturing remain too slow compared with the increasing importance of sheet-metal parts in modern industry. This paper proposes a method for automatically extracting features from an arbitrary solid model of sheet-metal parts; whose characteristics are used for classification and graph-based representation of the sheet-metal features to extract the features embodied in a sheet-metal part. The extracting feature process can be divided for valid checking of the model geometry, feature matching, and feature relationship. Since the extracted features include abundant geometry and engineering information, they will be effective for downstream application such as feature rebuilding and stamping process planning. 展开更多
关键词 Sheet-metal part Feature extraction Feature representation
下载PDF
Registration Based on ORB and FREAK Features for Augmented Reality Systems 被引量:3
5
作者 Yang Yu Yingchun Guo +2 位作者 Ruili Wang Susha Yin Ming Yu 《Transactions of Tianjin University》 EI CAS 2017年第2期192-200,共9页
This paper proposes a novel registration method for augmented reality (AR) systems based on Oriented FAST and Rotated BRIEF (ORB) and Fast Retina Keypoint (FREAK) natural features. In the proposed ORB-FREAK method, fe... This paper proposes a novel registration method for augmented reality (AR) systems based on Oriented FAST and Rotated BRIEF (ORB) and Fast Retina Keypoint (FREAK) natural features. In the proposed ORB-FREAK method, feature extraction is implemented based on the combination of ORB and FREAK, and the feature points are matched using Hamming distance. To get good matching points, cross-checks and least median squares are used to perform outlier filtration, and camera pose is estimated using the matched points. Finally, AR is rendered. Experiments show that the proposed method improves the speed of registration to be in real time; the proposed method can accurately register the target object under the circumstances of partial occlusion of the object; and it also can overcome the effects of rotation, scale change, ambient light and distance. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Augmented reality Feature extraction
下载PDF
AUTO-EXTRACTING TECHNIQUE OF DYNAMIC CHAOS FEATURES FOR NONLINEAR TIME SERIES 被引量:6
6
作者 CHEN Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期524-529,共6页
The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature informa... The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature information, and to provide effective approach for nonlinear signal analysis and fault diagnosis of nonlinear dynamic system. Now, it has already formed an important offset of nonlinear science. But, traditional method cannot extract chaos features automatically, and it needs man's participation in the whole process. A new method is put forward, which can implement auto-extracting of chaos features for nonlinear time series. Firstly, to confirm time delay r by autocorrelation method; Secondly, to compute embedded dimension m and correlation dimension D; Thirdly, to compute the maximum Lyapunov index λmax; Finally, to calculate the chaos degree Dch of Poincare map, and the non-circle degree Dnc and non-order degree Dno of quasi-phase orbit. Chaos features extracting has important meaning to fault diagnosis of nonlinear system based on nonlinear chaos features. Examples show validity of the proposed method. 展开更多
关键词 Nonlinear time series analysis Chaos Feature extracting Fault diagnosis
下载PDF
Multi-Level Fusion in Ultrasound for Cancer Detection Based on Uniform LBP Features 被引量:1
7
作者 Diyar Qader Zeebaree Adnan Mohsin Abdulazeez +2 位作者 Dilovan Asaad Zebari Habibollah Haron Haza Nuzly Abdull Hamed 《Computers, Materials & Continua》 SCIE EI 2021年第3期3363-3382,共20页
Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve ... Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve superior ultrasound image pattern recognition by reducing the speckle noise,an enhanced technique is not achieved.The purpose of this study is to introduce a features-based fusion scheme based on enhancement uniform-Local Binary Pattern(LBP)and filtered noise reduction.To surmount the above limitations and achieve the aim of the study,a new descriptor that enhances the LBP features based on the new threshold has been proposed.This paper proposes a multi-level fusion scheme for the auto-classification of the static ultrasound images of breast cancer,which was attained in two stages.First,several images were generated from a single image using the pre-processing method.Themedian andWiener filterswere utilized to lessen the speckle noise and enhance the ultrasound image texture.This strategy allowed the extraction of a powerful feature by reducing the overlap between the benign and malignant image classes.Second,the fusion mechanism allowed the production of diverse features from different filtered images.The feasibility of using the LBP-based texture feature to categorize the ultrasound images was demonstrated.The effectiveness of the proposed scheme is tested on 250 ultrasound images comprising 100 and 150 benign and malignant images,respectively.The proposed method achieved very high accuracy(98%),sensitivity(98%),and specificity(99%).As a result,the fusion process that can help achieve a powerful decision based on different features produced from different filtered images improved the results of the new descriptor of LBP features in terms of accuracy,sensitivity,and specificity. 展开更多
关键词 Breast cancer ultrasound image local binary pattern feature extraction noise reduction filters FUSION
下载PDF
Principal Face-based Recognition Approach for Machining Features of Aircraft Integral Panels 被引量:1
8
作者 YU Fangfang ZHENG Guolei +2 位作者 RAO Youfu DU Baorui CHU Hongzhen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期976-982,共7页
Feature recognition aims at extracting manufacturing features with geometrical information from solid model and is considered to be an efficient way of changing the interactive NC machining programming mode.Existing r... Feature recognition aims at extracting manufacturing features with geometrical information from solid model and is considered to be an efficient way of changing the interactive NC machining programming mode.Existing recognition methods have some disadvantages in practical applications.They can essentially handle prismatic components with regular shapes and are difficult to recognize the intersecting features and curved surfaces.Besides,the robustness of them is not strong enough.A new feature recognition approach is proposed based on the analysis of aircraft integral panels' geometry and machining characteristics.In this approach,the aircraft integral panel is divided into a number of local machining domains.The machining domains are extracted and recognized first by finding the principal face of machining domain and extracting the sides around the principal face.Then the machining domains are divided into various features in terms of the face type.The main sections of the proposed method are presented including the definition,classification and structure of machining domain,the relationship between machining domain and principal face loop,the rules of machining domains recognition,and the algorithm of machining feature recognition.In addition,a robotic feature recognition module is developed for aircraft integral panels and tested with several panels.Test results show that the strategy presented is robust and valid.Features extracted can be post processed and linked to various downstream applications.The approach is able to solve the difficulties in recognizing the aircraft integral panel's features and automatic obtaining the machining zone in NC programming,and can be used to further develop the automatic programming of NC machining. 展开更多
关键词 numerical control aircraft integral panel computer aided manufacturing feature extraction
下载PDF
Video Concept Detection Based on Multiple Features and Classifiers Fusion 被引量:1
9
作者 Dong Yuan Zhang Jiwei +2 位作者 Zhao Nan Chang Xiaofu Liu Wei 《China Communications》 SCIE CSCD 2012年第8期105-121,共17页
The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the ... The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts. 展开更多
关键词 concept detection visual feature extraction kemel-based learning classifier fusion
下载PDF
Retrieval of High Resolution Satellite Images Using Texture Features 被引量:1
10
作者 Samia Bouteldja Assia Kourgli 《Journal of Electronic Science and Technology》 CAS 2014年第2期211-215,共5页
In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture ... In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval. 展开更多
关键词 Content-based image retrieval high resolution satellite imagery local binary pattern texture feature extraction
下载PDF
Soft measurement for component content based on adaptive model of Pr/Nd color features 被引量:5
11
作者 陆荣秀 杨辉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1981-1986,共6页
For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fas... For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction. 展开更多
关键词 Pr/Nd extraction Color feature Component content Adaptive iterative least squares support vector machine Real-time correction
下载PDF
Robust Speech Recognition System Using Conventional and Hybrid Features of MFCC,LPCC,PLP,RASTA-PLP and Hidden Markov Model Classifier in Noisy Conditions 被引量:7
12
作者 Veton Z.Kepuska Hussien A.Elharati 《Journal of Computer and Communications》 2015年第6期1-9,共9页
In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance... In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance degradation in noisy conditions or distorted channels. It is necessary to search for more robust feature extraction methods to gain better performance in adverse conditions. This paper investigates the performance of conventional and new hybrid speech feature extraction algorithms of Mel Frequency Cepstrum Coefficient (MFCC), Linear Prediction Coding Coefficient (LPCC), perceptual linear production (PLP), and RASTA-PLP in noisy conditions through using multivariate Hidden Markov Model (HMM) classifier. The behavior of the proposal system is evaluated using TIDIGIT human voice dataset corpora, recorded from 208 different adult speakers in both training and testing process. The theoretical basis for speech processing and classifier procedures were presented, and the recognition results were obtained based on word recognition rate. 展开更多
关键词 Speech Recognition Noisy Conditions Feature Extraction Mel-Frequency Cepstral Coefficients Linear Predictive Coding Coefficients Perceptual Linear Production RASTA-PLP Isolated Speech Hidden Markov Model
下载PDF
A Novel Airborne 3D Laser Point Cloud Hole Repair Algorithm Considering Topographic Features 被引量:5
13
作者 Zan ZHU Shu GAN +1 位作者 Jianqi WANG Nijia QIAN 《Journal of Geodesy and Geoinformation Science》 2020年第3期29-38,共10页
Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3... Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved. 展开更多
关键词 airborne 3D laser scanning point cloud hole repair topographic feature line extraction mountain mapping
下载PDF
New supervised learning classifiers for structural damage diagnosis using time series features from a new feature extraction technique
14
作者 Masoud Haghani Chegeni Mohammad Kazem Sharbatdar +1 位作者 Reza Mahjoub Mahdi Raftari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期169-191,共23页
The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduce... The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduced to extract damage-sensitive features from auto-regressive models.This approach sets out to improve current feature extraction techniques in the context of time series modeling.The coefficients and residuals of the AR model obtained from the proposed approach are selected as the main features and are applied to the proposed supervised learning classifiers that are categorized as coefficient-based and residual-based classifiers.These classifiers compute the relative errors in the extracted features between the undamaged and damaged states.Eventually,the abilities of the proposed methods to localize and quantify single and multiple damage scenarios are verified by applying experimental data for a laboratory frame and a four-story steel structure.Comparative analyses are performed to validate the superiority of the proposed methods over some existing techniques.Results show that the proposed classifiers,with the aid of extracted features from the proposed feature extraction approach,are able to locate and quantify damage;however,the residual-based classifiers yield better results than the coefficient-based classifiers.Moreover,these methods are superior to some classical techniques. 展开更多
关键词 structural damage diagnosis statistical pattern recognition feature extraction time series analysis supervised learning CLASSIFICATION
下载PDF
Optimal Fusion-Based Handcrafted with Deep Features for Brain Cancer Classification
15
作者 Mahmoud Ragab Sultanah M.Alshammari +1 位作者 Amer H.Asseri Waleed K.Almutiry 《Computers, Materials & Continua》 SCIE EI 2022年第10期801-815,共15页
Brain cancer detection and classification is done utilizing distinct medical imaging modalities like computed tomography(CT),or magnetic resonance imaging(MRI).An automated brain cancer classification using computer a... Brain cancer detection and classification is done utilizing distinct medical imaging modalities like computed tomography(CT),or magnetic resonance imaging(MRI).An automated brain cancer classification using computer aided diagnosis(CAD)models can be designed to assist radiologists.With the recent advancement in computer vision(CV)and deep learning(DL)models,it is possible to automatically detect the tumor from images using a computer-aided design.This study focuses on the design of automated Henry Gas Solubility Optimization with Fusion of Handcrafted and Deep Features(HGSO-FHDF)technique for brain cancer classification.The proposed HGSO-FHDF technique aims for detecting and classifying different stages of brain tumors.The proposed HGSO-FHDF technique involves Gabor filtering(GF)technique for removing the noise and enhancing the quality of MRI images.In addition,Tsallis entropy based image segmentation approach is applied to determine injured brain regions in the MRI image.Moreover,a fusion of handcrafted with deep features using Residual Network(ResNet)is utilized as feature extractors.Finally,HGSO algorithm with kernel extreme learning machine(KELM)model was utilized for identifying the presence of brain tumors.For examining the enhanced brain tumor classification performance,a comprehensive set of simulations take place on the BRATS 2015 dataset. 展开更多
关键词 Brain cancer medical imaging deep learning fusion model metaheuristics feature extraction handcrafted features
下载PDF
Detection of Lung Nodules on X-ray Using Transfer Learning and Manual Features
16
作者 Imran Arshad Choudhry Adnan N.Qureshi 《Computers, Materials & Continua》 SCIE EI 2022年第7期1445-1463,共19页
The well-established mortality rates due to lung cancers,scarcity of radiology experts and inter-observer variability underpin the dire need for robust and accurate computer aided diagnostics to provide a second opini... The well-established mortality rates due to lung cancers,scarcity of radiology experts and inter-observer variability underpin the dire need for robust and accurate computer aided diagnostics to provide a second opinion.To this end,we propose a feature grafting approach to classify lung cancer images from publicly available National Institute of Health(NIH)chest X-Ray dataset comprised of 30,805 unique patients.The performance of transfer learning with pre-trained VGG and Inception models is evaluated in comparison against manually extracted radiomics features added to convolutional neural network using custom layer.For classification with both approaches,Support VectorsMachines(SVM)are used.The results from the 5-fold cross validation report Area Under Curve(AUC)of 0.92 and accuracy of 96.87%in detecting lung nodules with the proposed method.This is a plausible improvement against the observed accuracy of transfer learning using Inception(79.87%).The specificity of allmethods is>99%,however,the sensitivity of the proposed method(97.24%)surpasses that of transfer learning approaches(<67%).Furthermore,it is observed that the true positive rate with SVM is highest at the same false-positive rate in experiments amongst Random Forests,Decision Trees,and K-Nearest Neighbor classifiers.Hence,the proposed approach can be used in clinical and research environments to provide second opinions very close to the experts’intuition. 展开更多
关键词 Lungs cancer convolutional neural network hand-crafted feature extraction deep learning classification
下载PDF
Recognition of Offline Handwritten Arabic Words Using a Few Structural Features
17
作者 Abderrahmane Saidi Abdelmouneim Moulay Lakhdar Mohammed Beladgham 《Computers, Materials & Continua》 SCIE EI 2021年第3期2875-2889,共15页
Handwriting recognition is one of the most significant problems in pattern recognition,many studies have been proposed to improve this recognition of handwritten text for different languages.Yet,Fewer studies have bee... Handwriting recognition is one of the most significant problems in pattern recognition,many studies have been proposed to improve this recognition of handwritten text for different languages.Yet,Fewer studies have been done for the Arabic language and the processing of its texts remains a particularly distinctive problem due to the variability of writing styles and the nature of Arabic scripts compared to other scripts.The present paper suggests a feature extraction technique for offlineArabic handwriting recognition.A handwriting recognition system for Arabic words using a few important structural features and based on a Radial Basis Function(RBF)neural networks is proposed.The methods of feature extraction are central to achieve high recognition performance.The proposed methodology relies on a feature extraction technique based on many structural characteristics extracted from the word skeleton(subwords,diacritics,loops,ascenders,and descenders).In order to reach our purpose,we built our own word database and the proposed system has been successfully tested on a handwriting database of Algerian city names(wilayas).Finally,a simple classifier based on the radial basis function neural network is presented to recognize certain words to verify the reliability of the proposed feature extraction.The experiments on some images of the benchmark IFN/ENIT database show that the proposed system improves recognition and the results obtained are indicative of the efficiency of our technique. 展开更多
关键词 Offline Arabic handwriting recognition PREPROCESSING feature extraction structural features RBF neural network
下载PDF
Hybrid Segmentation Scheme for Skin Features Extraction Using Dermoscopy Images
18
作者 Jehyeok Rew Hyungjoon Kim Eenjun Hwang 《Computers, Materials & Continua》 SCIE EI 2021年第10期801-817,共17页
Objective and quantitative assessment of skin conditions is essential for cosmeceutical studies and research on skin aging and skin regeneration.Various handcraft-based image processing methods have been proposed to e... Objective and quantitative assessment of skin conditions is essential for cosmeceutical studies and research on skin aging and skin regeneration.Various handcraft-based image processing methods have been proposed to evaluate skin conditions objectively,but they have unavoidable disadvantages when used to analyze skin features accurately.This study proposes a hybrid segmentation scheme consisting of Deeplab v3+with an Inception-ResNet-v2 backbone,LightGBM,and morphological processing(MP)to overcome the shortcomings of handcraft-based approaches.First,we apply Deeplab v3+with an Inception-ResNet-v2 backbone for pixel segmentation of skin wrinkles and cells.Then,LightGBM and MP are used to enhance the pixel segmentation quality.Finally,we determine several skin features based on the results of wrinkle and cell segmentation.Our proposed segmentation scheme achieved a mean accuracy of 0.854,mean of intersection over union of 0.749,and mean boundary F1 score of 0.852,which achieved 1.1%,6.7%,and 14.8%improvement over the panoptic-based semantic segmentation method,respectively. 展开更多
关键词 Image segmentation skin texture feature extraction dermoscopy image
下载PDF
A system for detection of cervical precancerous in field emission scanning electron microscope images using texture features
19
作者 Yessi Jusman Siew-Cheok Ng +3 位作者 Khairunnisa Hasikin Rahmadi Kurnia Noor Azuan Abu Osman Kean Hooi Teoh 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2017年第2期81-92,共12页
This study develops a novel cervical precancerous detection system by using texture analysis of field emission scanning electron microscopy(FE-SEM)images.The processing scheme adopted in the proposed system focused on... This study develops a novel cervical precancerous detection system by using texture analysis of field emission scanning electron microscopy(FE-SEM)images.The processing scheme adopted in the proposed system focused on two steps.The first step was to enhance cervical cell FE-SEM images in order to show the precancerous characterization indicator.A problem arises from the question of how to extract features which characterize cervical precancerous cells.For the first step,a preprocessing technique called intensity transformation and morphological operation(ITMO)algorithm used to enhance the quality of images was proposed.The algo-rithm consisted of contrast stretching and morphological opening operations.The second step was to characterize the cervical cells to three classes,namely normal,low grade intra-epithelial squamous lesion(LSIL),and high grade intra-epithelial squamous lesion(HSIL).To differen-tiate between normal and precancerous cells of the cervical cell FE-SEM images,human papillomavirus(HPV)contained in the surface of cells were used as indicators.In this paper,we investigated the use of texture as a tool in determining precancerous cell images based on the observation that cell images have a distinct visual texture.Gray level co-occurrences matrix(GLCM)technique was used to extract the texture features.To confirm the system's perfor-mance,the system was tested using 150 cervical cell FE-SEM images.The results showed that the accuracy,sensitivity and specificity of the proposed system are 95.7%,95.7%and 95.8%,respectively. 展开更多
关键词 Cervical cancer detection electron image image processing features extraction intelligent system.
下载PDF
A Healthcare System for COVID19 Classification Using Multi-Type Classical Features Selection
20
作者 Muhammad Attique Khan Majed Alhaisoni +5 位作者 Muhammad Nazir Abdullah Alqahtani Adel Binbusayyis Shtwai Alsubai Yunyoung Nam Byeong-Gwon Kang 《Computers, Materials & Continua》 SCIE EI 2023年第1期1393-1412,共20页
The coronavirus(COVID19),also known as the novel coronavirus,first appeared in December 2019 in Wuhan,China.After that,it quickly spread throughout the world and became a disease.It has significantly impacted our ever... The coronavirus(COVID19),also known as the novel coronavirus,first appeared in December 2019 in Wuhan,China.After that,it quickly spread throughout the world and became a disease.It has significantly impacted our everyday lives,the national and international economies,and public health.However,early diagnosis is critical for prompt treatment and reducing trauma in the healthcare system.Clinical radiologists primarily use chest X-rays,and computerized tomography(CT)scans to test for pneumonia infection.We used Chest CT scans to predict COVID19 pneumonia and healthy scans in this study.We proposed a joint framework for prediction based on classical feature fusion and PSO-based optimization.We begin by extracting standard features such as discrete wavelet transforms(DWT),discrete cosine transforms(DCT),and dominant rotated local binary patterns(DRLBP).In addition,we extracted Shanon Entropy and Kurtosis features.In the following step,a Max-Covariance-based maximization approach for feature fusion is proposed.The fused features are optimized in the preliminary phase using Particle Swarm Optimization(PSO)and the ELM fitness function.For final prediction,PSO is used to obtain robust features,which are then implanted in a Support Vector Data Description(SVDD)classifier.The experiment is carried out using available COVID19 Chest CT Scans and scans from healthy patients.These images are from the Radiopaedia website.For the proposed scheme,the fusion and selection process accuracy is 88.6%and 93.1%,respectively.A detailed analysis is conducted,which supports the proposed system efficiency. 展开更多
关键词 COVID19 features extraction information fusion OPTIMIZATION PREDICTION
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部