The mode switching between spatial multiplexing (SM) and space-time block code (STBC) diversity is investigated for the multiple-input multiple-output (MIMO) automatic repeat request (ARQ) system. Five importa...The mode switching between spatial multiplexing (SM) and space-time block code (STBC) diversity is investigated for the multiple-input multiple-output (MIMO) automatic repeat request (ARQ) system. Five important practical factors are considered in the proposed switching scheme: transmit correlation, ARQ technique, packet loss probability (PLP) constraint, discrete rate transmission (DRT) and channel coding. Under the spatially correlated channel, the distributions of the post signal-to-interference-plus- noise ratio (SiNR) for the SM mode and the STBC mode are obtained by using Gamma approximations. Then this paper derives the closed-form expressions of the PLP and the throughput for different modes when the ARQ technique is employed, based on which the mode switching algorithm is proposed to improve the spectral efficency. In the simulation, the correction of the expressions is first verified. Then, the significant gain observed by the proposed algorithm is presented. Since the switching point is the key parameter to implement the mode switching, this paper also shows how the switching point is affected by the practical factors considered.展开更多
We studied carrier landing robust control based on longitudinal decoupling.Firstly,due to the relative strong coupling between the tangential and the normal directions,the height and the velocity channels were decoupl...We studied carrier landing robust control based on longitudinal decoupling.Firstly,due to the relative strong coupling between the tangential and the normal directions,the height and the velocity channels were decoupled by using the exact linearization method,so that controllers for the two channels could be designed seperately.In the height control,recursive dynamic surface was used to accelerate the convergence of the height control and eliminate″the explosion of complexity″.The radial basis function(RBF)neural network was designed by using the minimum learning parameter method to compensate the uncertainty.A kind of surface with nonsingular fast terminal sliding mode and its reaching law were developed to ensure finite time convergence and to avoid singularity.The controller for the velocity was designed by using super-twisting second-order sliding mode control.The stability of the proposed system was validated by Lyapunov method.The results showed that the Levant′s robust differential observer was improved and used for the observation of the required higher order differential of signals in the controller.The response of aircraft carrier landing under the complex disturbance is simulated and the results verified the approach.展开更多
This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for ...This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for a decoupling IM system is presented. The scheme is shown to be robust to parametric variations and external disturbances. Simulation results show the stability and effectiveness of the proposed scheme展开更多
基金supported by the Chinese Important National Science and Technology Specific Project(2010ZX03002-003-01)
文摘The mode switching between spatial multiplexing (SM) and space-time block code (STBC) diversity is investigated for the multiple-input multiple-output (MIMO) automatic repeat request (ARQ) system. Five important practical factors are considered in the proposed switching scheme: transmit correlation, ARQ technique, packet loss probability (PLP) constraint, discrete rate transmission (DRT) and channel coding. Under the spatially correlated channel, the distributions of the post signal-to-interference-plus- noise ratio (SiNR) for the SM mode and the STBC mode are obtained by using Gamma approximations. Then this paper derives the closed-form expressions of the PLP and the throughput for different modes when the ARQ technique is employed, based on which the mode switching algorithm is proposed to improve the spectral efficency. In the simulation, the correction of the expressions is first verified. Then, the significant gain observed by the proposed algorithm is presented. Since the switching point is the key parameter to implement the mode switching, this paper also shows how the switching point is affected by the practical factors considered.
基金supported in part by the National Natural Science Foundation of China(No.51505491)
文摘We studied carrier landing robust control based on longitudinal decoupling.Firstly,due to the relative strong coupling between the tangential and the normal directions,the height and the velocity channels were decoupled by using the exact linearization method,so that controllers for the two channels could be designed seperately.In the height control,recursive dynamic surface was used to accelerate the convergence of the height control and eliminate″the explosion of complexity″.The radial basis function(RBF)neural network was designed by using the minimum learning parameter method to compensate the uncertainty.A kind of surface with nonsingular fast terminal sliding mode and its reaching law were developed to ensure finite time convergence and to avoid singularity.The controller for the velocity was designed by using super-twisting second-order sliding mode control.The stability of the proposed system was validated by Lyapunov method.The results showed that the Levant′s robust differential observer was improved and used for the observation of the required higher order differential of signals in the controller.The response of aircraft carrier landing under the complex disturbance is simulated and the results verified the approach.
文摘This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for a decoupling IM system is presented. The scheme is shown to be robust to parametric variations and external disturbances. Simulation results show the stability and effectiveness of the proposed scheme