There are two kinds of unbalance vibrations—force vibration and displacement vibration due to the existence of unbalance excitation in active magnetic bearings(AMB) system. And two unbalance compensation methods—c...There are two kinds of unbalance vibrations—force vibration and displacement vibration due to the existence of unbalance excitation in active magnetic bearings(AMB) system. And two unbalance compensation methods—closed-loop feedback and open loop feed-forward are presented to reduce the force vibration. The transfer function order of the control system directly influencing the system stability will be increased when the closed-loop method is adopted, which makes the real-time compensation not easily achieved. While the open loop method would not increase the primary transfer function order, it provides conditions for real-time compensation. But the real-time compensation signals are not easy to be obtained in the open loop method. To implement real-time force compensation, a new method is proposed to reduce the force vibration caused by the rotor unbalance on the basis of AMB active control. The method realizes real-time and on-line force auto-compensation based on H∞ controller and one novel feed-forward compensation controller, which makes the rotor rotate around its inertia axis. The time-variable feed-forward compensatory signal is provided by a modified adaptive variable step-size least mean square(VSLMS) algorithm. And the relevant least mean square(LMS) algorithm parameters are used to solve the H∞ controller weighting functions. The simulation of the new method to compensate some frequency-variable and sinusoidal signals is completed by MATLAB programming, and real-time compensation is implemented in the actual AMB experimental system. The simulation and experiment results show that the compensation scheme can improve the robust stability and the anti-interference ability of the whole AMB system by using H∞ controller to achieve close-loop control, and then real-time force unbalance compensation is implemented. The proposed research provides a new control strategy containing real-time algorithm and H∞ controller for the force compensation of AMB system. And the stability of the control system is finally improved.展开更多
A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The prop...A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The proposed control approach combined the advantages of traditional feedback closed-loop position control and computed torque control based on inverse dynamic model. The feed-forward compensator used a nominal robot dynamics as accurate dynamic model and on-line identification with RBF-NN as uncertain part to improve dynamic modeling accu- racy. The proposed compensation was applied as velocity feed-forward by an inverse velocity controller that can con- vert torque signal into velocity in the standard industrial controller. Then, the need for a torque control interface was avoided in the real-time dynamic control of industrial robot. The simulations and experiments were carried out on a gas cutting manipulator. The results show that the proposed control approach can reduce steady-state error, suppress overshoot and enhance tracking accuracy and efficiency in joint space and Cartesian space, especially under high- speed condition.展开更多
In data stream management systems (DSMSs), how to maintain the quality of queries is a difficult problem because both the processing cost and data arrival rates are highly unpredictable. When the system is overloaded,...In data stream management systems (DSMSs), how to maintain the quality of queries is a difficult problem because both the processing cost and data arrival rates are highly unpredictable. When the system is overloaded, quality degrades significantly and thus load shedding becomes necessary. Unlike processing overloading in the general way which is only by a feedback control (FB) loop to obtain a good and stable performance over data streams, a feedback plus feed-forward control (FFC) strategy is introduced in DSMSs, which have a good quality of service (QoS) in the aspects of miss ratio and processing delay. In this paper, a quality adaptation framework is proposed, in which the control-theory-based techniques are leveraged to adjust the application behavior with the considerations of the current system status. Compared to previous solutions, the FFC strategy achieves a good quality with a waste of fewer resources.展开更多
In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed ...In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion展开更多
Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is su...Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is susceptible to malicious cyber attacks, which can create serious technical, economical, social and control problems in power network operations. In contrast to the traditional cyber attack minimization techniques, this paper proposes a recursive systematic convolutional(RSC) code and Kalman filter(KF) based method in the context of smart grids.Specifically, the proposed RSC code is used to add redundancy in the microgrid states, and the log maximum a-posterior is used to recover the state information, which is affected by random noises and cyber attacks. Once the estimated states are obtained by KF algorithm, a semidefinite programming based optimal feedback controller is proposed to regulate the system states, so that the power system can operate properly. Test results show that the proposed approach can accurately mitigate the cyber attacks and properly estimate and control the system states.展开更多
Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance...Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance keeping, lane keeping and changing and other functionalities. The modern automobile is a complex system of systems. How the functionalities of advanced driver assistance are implemented and coordinated across the systems of the vehicle is generally not made available to the wider research community by the developers and manufactures. This paper seeks to begin filling this gap by assembling open source physics models of the vehicle dynamics and ADAS command models. Additionally, in order to facilitate ADAS development and testing without having access to the details of ADAS, a coordinated control architecture for motion management is also proposed for distributing ADAS motion control commands over vehicle systems. The architecture is demonstrated in a case study where motion is coordinated between the steering and the braking systems, which are typically used only for a single functionality. The integrated vehicle and system dynamics using the coordinated control architecture are simulated for various driving tasks. It is seen that improved trajectory following can be achieved by the proposed coordinated control architecture. The models, simulations and control architecture are made available for open access.展开更多
This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-fo...This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-forward compensation active disturbance rejection control(FFC-ADRC) approach is proposed. It combines advantages of the Smith predictor and the traditional active disturbance rejection control(ADRC). The tracking differentiator(TD) is designed to predict the control signal, which adds an anticipatory control to the control signal and allows a higher observer bandwidth to obtain better disturbance rejection. The modified extended state observer(ESO) is designed to estimate both system states and the total disturbances(internal disturbance, uncertainties and delayed disturbance). Then the Lyapunov theory and the theory of the input-output stability are applied to prove the asymptotic stability of the closed-loop control system. Finally, numerical simulations show the effectiveness and practicality of the proposed design.展开更多
The control strategy and simulation of external carbon addition were specially studied in an anoxic-oxic(A/O) process with low carbon: nitrogen(C/N) domestic wastewater. The control strategy aimed to adjust the flow r...The control strategy and simulation of external carbon addition were specially studied in an anoxic-oxic(A/O) process with low carbon: nitrogen(C/N) domestic wastewater. The control strategy aimed to adjust the flow rate of external carbon dosage to the anoxic zone, thus the concentration of nitrate plus nitrite(NOx--N) in the anoxic zone was kept closed to the set point. The relationship was studied between the NOx--N concentration in the anoxic zone(S_ NO) and the dosage of external carbon, and the results showed that the removal efficiency of the total nitrogen(TN) could not be largely improved by double dosage of carbon source when S_ NO reached about 2 mg/L. Through keeping S_ NO at the level of about 2 mg/L, the demand of effluent quality could be met and the carbon dosage could be optimized. Based on the Activated Sludge Model No.1(ASM No.1), a simplified mathematical model of external carbon dosage was developed. Simulation results showed that PI controller and feed-forward PI controller both had good dynamic response and steady precision. And feed-forward PI controller had better control effects due to its consideration of influent disturbances.展开更多
A modified coupled map car-following model is proposed, in which two successive vehicle headways in front of the considering vehicle is incorporated into the optimal velocity function. The steady state under certain c...A modified coupled map car-following model is proposed, in which two successive vehicle headways in front of the considering vehicle is incorporated into the optimal velocity function. The steady state under certain conditions is obtained. An error system around the steady state is studied further. Moreover, the condition for the state having no traffic jam is derived. A new control scheme is presented to suppress the traffic jam in the modified coupled map car-following model under the open boundary. A control signal including the velocity differences between the following and the considering vehicles, and between the preceding and the considering vehicles is used. The condition under which the traffic jam can be well suppressed is analysed. The results are compared with that presented by t^onishi et al. (the KKH model). The simulation results show that the temporal behaviour obtained in our model is better than that in the KKH model. The simulation results are in good agreement with the theoretical analysis.展开更多
Not so much had been talked about equilibrium in control area. On the basis of the phenomenon of balance, the concept of control-equilibrium and control-equilibrium of a control system is proposed. According to this t...Not so much had been talked about equilibrium in control area. On the basis of the phenomenon of balance, the concept of control-equilibrium and control-equilibrium of a control system is proposed. According to this theory, a perfect control method should not only guarantee stability of the system, but also ensure the control-equilibrium of the system. To achieve the control-equilibrium, feed-forward control is required.展开更多
The paper presents a successful design and good result of grid voltage feed-forward control strategy with no damping regulator of LCL filter applied in Three-phase Pulse Width Modulation( PWM) rectifier under unbalanc...The paper presents a successful design and good result of grid voltage feed-forward control strategy with no damping regulator of LCL filter applied in Three-phase Pulse Width Modulation( PWM) rectifier under unbalance grid condition for renewable energy processing. It is demonstrated that the closed-loop current control is decoupled with the grid voltage feed-forward control,and good waveform of grid current with low order harmonics is obtained under unbalance grid condition. This novel strategy is simple and reliable,applied with PI regulator but no resonant controller in α,β two-phase stationary frame. Moreover,the results of experiment and simulation are also illustrated to validate the novel strategy well applied in the closed-loop current control system under unbalanced grid condition.展开更多
To satisfy the requirements of motion control for industrial machine, a multi-axis motion controller based on DSP is developed in this paper. The motion controller consists of DSP which plays a main role in this desig...To satisfy the requirements of motion control for industrial machine, a multi-axis motion controller based on DSP is developed in this paper. The motion controller consists of DSP which plays a main role in this design;DPRAM to make sure the rapid and reliable communication with host;FPGA to handle the task of address decoder and receiving feed-back encoder signal;and several peripheral logic circuits. In the part of hardware design, overall structure of motion control system is presented. Then, the Feed-Forward Proportional-Integral-Velocity (FFPIV) scheme which introduces KV in term of velocity loop to achieve the accurate, smooth and real-time response is proposed in the software developing part. The experiment data are carried out to indicate that this motion controller has advantages of superior performance and highly machining precision.展开更多
Because the load of the oil beam pumping unit driven by pure electric motor changes sharply during operation,the power of the driving motor does not match and the energy efficiency is low.In this paper,a new type of w...Because the load of the oil beam pumping unit driven by pure electric motor changes sharply during operation,the power of the driving motor does not match and the energy efficiency is low.In this paper,a new type of wind-driven hydro-motor hybrid power system is proposed.The motor and the hydraulic motor are jointly driven,and the energy is recovered by a hydraulic pump with controllable displacement,so that the speed of the driving motor is relatively stable.In order to control the fan speed and keep up with the drastic changes of the outside wind speed,a control strategy of hybrid power system based on wind speed feed-forward compensation is proposed.Through simulation and experimental results,the following conclusions can be drawn:to begin with,the mathematic model is proved to be effective;next,simulation studies show that the proposed feed-forward control method can improve the response rate as well as reduce the response lag.This research can be a reference for the application of the feed-forward control method on the hybrid power system of beam pumping unit.system.展开更多
This paper researches the proportional-derivative(PD)feedback control with feed-forward compensations from input for a triangular tethered satellite system(TTSS),and the extended state observer(ESO)design which is fur...This paper researches the proportional-derivative(PD)feedback control with feed-forward compensations from input for a triangular tethered satellite system(TTSS),and the extended state observer(ESO)design which is further incorporated in control to estimate the structural uncertainties in system.By expanding Lagrangian equations under chosen variables,the dynamic equations of TTSS are derived which is the second-order nonlinear equation.Then the feedback control under typical feed-forward compensations is discussed as the nonlinear functions in system are counteracted,and the controlled outputs are computed by deriving the transfer functions of the transformed structures.Moreover,in case of the uncertain structures in system which may constrain the control e®ect,ESO-based PD control is further proposed,and the observed error and controlled accuracy are analyzed by Lyapunov functions.Simulation results on the designed controls are presented to validate the theoretic analyses.展开更多
The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach.This research is divided into two modules.The first module focus...The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach.This research is divided into two modules.The first module focuses on the design of a motion controller for the Physik Instrumente(PI)-based Stewart platform.In contrast,the second module deals with the development of a machine-learning-based spatial object tracking algorithm by collecting information from the Zed 2 stereo vision system.Presently,simple feed-forward neural networks(NN)are used to predict the orientation of the top table of the platform.While training,the x,y,and z coordinates of the three-dimensional(3D)object,extracted from images,are used as the input to the NN.In contrast,the orientation information of the platform(that is,rotation about the x,y,and z-axes)is considered as the output from the network.The orientation information obtained from the network is fed to the inverse kinematics-based motion controller(module 1)to move the platform while tracking the object.After training,the optimised NN is used to track the continuously moving 3D object.The experimental results show that the developed NN-based controller has successfully tracked the moving spatial object with reasonably good accuracy.展开更多
In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. M...In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios.展开更多
A feed-forward Common-Mode (CM) charge control circuit for a high-speed Charge-Domain (CO) pipelined Analog-to-Digital Converter (ADC) is presented herein. This study aims at solving the problem whereby the prec...A feed-forward Common-Mode (CM) charge control circuit for a high-speed Charge-Domain (CO) pipelined Analog-to-Digital Converter (ADC) is presented herein. This study aims at solving the problem whereby the precision of CD pipelined ADCs is restricted by the variation in input CM charge, which can compensate for CM charge errors caused by a variation in CM charge input in real time. Based on the feed-forward CM charge control circuit, a 12-bit 250-MS/s CD pipelined ADC is designed and realized using a 1P6M 0.18-μm CMOS process. The ADC achieved a Spurious Free Dynamic Range (SFDR) of 78.1 dB and a Signal-to-Noise-and-Distortion Ratio (SNDR) of 64.6 dB for a 20.1-MHz input; a SFDR of 74.9 dB and SNDR of 62.0 dB were achieved for a 239.9-MHz input at full sampling rate. The variation in signal-to-noise ratio was less than 3 dB over a 0-1.2 V input CM voltage range. The power consumption of the prototype ADC is only 85 mW at 1.8 V supply, and it occupies an active die area of 2.24 mm^2.展开更多
A fast tool servo (FTS) system is developed for the fabrication of non-rotationally symmetric micro-structured surfaces using single-point diamond turning machines.The constructed FTS employs a piezoelectric tube actu...A fast tool servo (FTS) system is developed for the fabrication of non-rotationally symmetric micro-structured surfaces using single-point diamond turning machines.The constructed FTS employs a piezoelectric tube actuator (PZT) to actuate the diamond tool and a capacitive probe as the feedback sensor.To compensate the inherent nonlinear hysteresis behavior of the piezoelectric actuator,Proportional Integral (PI) feedback control is implemented.Besides,a feed-forward control based on a simple feed-forward predictor has been added to achieve better tracking performance.Experimental results indicate that error motions in the performance of the system caused by hysteresis can be reduced greatly and the micro-structured surface is successfully fabricated by implementing the FTS.展开更多
In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response w...In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.展开更多
The dynamic linear state feedback control problem is addressed for a class of nonlinear systems subject to time-delay.First,using the dynamic change of coordinates,the problem of global state feedback stabilization is...The dynamic linear state feedback control problem is addressed for a class of nonlinear systems subject to time-delay.First,using the dynamic change of coordinates,the problem of global state feedback stabilization is solved for a class of time-delay systems under a type of nonhomogeneous growth conditions.With the aid of an appropriate Lyapunov-Krasovskii functional and the adaptive strategy used in coordinates,the closed-loop system can be globally asymptotically stabilized by the dynamic linear state feedback controller.The growth condition in perturbations are more general than that in the existing results.The correctness of the theoretical results are illustrated with an academic simulation example.展开更多
基金supported by National Natural Science Foundation of China(Grant No.50437010)National Hi-tech Research and Development Program of China(863Program,Grant No.2006AA05Z205)Project of Six Talented Peak of Jiangsu Province,China(Grant No.07-D-013)
文摘There are two kinds of unbalance vibrations—force vibration and displacement vibration due to the existence of unbalance excitation in active magnetic bearings(AMB) system. And two unbalance compensation methods—closed-loop feedback and open loop feed-forward are presented to reduce the force vibration. The transfer function order of the control system directly influencing the system stability will be increased when the closed-loop method is adopted, which makes the real-time compensation not easily achieved. While the open loop method would not increase the primary transfer function order, it provides conditions for real-time compensation. But the real-time compensation signals are not easy to be obtained in the open loop method. To implement real-time force compensation, a new method is proposed to reduce the force vibration caused by the rotor unbalance on the basis of AMB active control. The method realizes real-time and on-line force auto-compensation based on H∞ controller and one novel feed-forward compensation controller, which makes the rotor rotate around its inertia axis. The time-variable feed-forward compensatory signal is provided by a modified adaptive variable step-size least mean square(VSLMS) algorithm. And the relevant least mean square(LMS) algorithm parameters are used to solve the H∞ controller weighting functions. The simulation of the new method to compensate some frequency-variable and sinusoidal signals is completed by MATLAB programming, and real-time compensation is implemented in the actual AMB experimental system. The simulation and experiment results show that the compensation scheme can improve the robust stability and the anti-interference ability of the whole AMB system by using H∞ controller to achieve close-loop control, and then real-time force unbalance compensation is implemented. The proposed research provides a new control strategy containing real-time algorithm and H∞ controller for the force compensation of AMB system. And the stability of the control system is finally improved.
文摘A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The proposed control approach combined the advantages of traditional feedback closed-loop position control and computed torque control based on inverse dynamic model. The feed-forward compensator used a nominal robot dynamics as accurate dynamic model and on-line identification with RBF-NN as uncertain part to improve dynamic modeling accu- racy. The proposed compensation was applied as velocity feed-forward by an inverse velocity controller that can con- vert torque signal into velocity in the standard industrial controller. Then, the need for a torque control interface was avoided in the real-time dynamic control of industrial robot. The simulations and experiments were carried out on a gas cutting manipulator. The results show that the proposed control approach can reduce steady-state error, suppress overshoot and enhance tracking accuracy and efficiency in joint space and Cartesian space, especially under high- speed condition.
基金Supported by the National Key R&D Program of China(2016YFC1401900)the National Science Foundation of China(61173029,61672144)
文摘In data stream management systems (DSMSs), how to maintain the quality of queries is a difficult problem because both the processing cost and data arrival rates are highly unpredictable. When the system is overloaded, quality degrades significantly and thus load shedding becomes necessary. Unlike processing overloading in the general way which is only by a feedback control (FB) loop to obtain a good and stable performance over data streams, a feedback plus feed-forward control (FFC) strategy is introduced in DSMSs, which have a good quality of service (QoS) in the aspects of miss ratio and processing delay. In this paper, a quality adaptation framework is proposed, in which the control-theory-based techniques are leveraged to adjust the application behavior with the considerations of the current system status. Compared to previous solutions, the FFC strategy achieves a good quality with a waste of fewer resources.
基金National Natural Science Foundation of China(No.61261029)
文摘In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion
文摘Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is susceptible to malicious cyber attacks, which can create serious technical, economical, social and control problems in power network operations. In contrast to the traditional cyber attack minimization techniques, this paper proposes a recursive systematic convolutional(RSC) code and Kalman filter(KF) based method in the context of smart grids.Specifically, the proposed RSC code is used to add redundancy in the microgrid states, and the log maximum a-posterior is used to recover the state information, which is affected by random noises and cyber attacks. Once the estimated states are obtained by KF algorithm, a semidefinite programming based optimal feedback controller is proposed to regulate the system states, so that the power system can operate properly. Test results show that the proposed approach can accurately mitigate the cyber attacks and properly estimate and control the system states.
基金supported by the Programme for Simulation Innovation(PSI)
文摘Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance keeping, lane keeping and changing and other functionalities. The modern automobile is a complex system of systems. How the functionalities of advanced driver assistance are implemented and coordinated across the systems of the vehicle is generally not made available to the wider research community by the developers and manufactures. This paper seeks to begin filling this gap by assembling open source physics models of the vehicle dynamics and ADAS command models. Additionally, in order to facilitate ADAS development and testing without having access to the details of ADAS, a coordinated control architecture for motion management is also proposed for distributing ADAS motion control commands over vehicle systems. The architecture is demonstrated in a case study where motion is coordinated between the steering and the braking systems, which are typically used only for a single functionality. The integrated vehicle and system dynamics using the coordinated control architecture are simulated for various driving tasks. It is seen that improved trajectory following can be achieved by the proposed coordinated control architecture. The models, simulations and control architecture are made available for open access.
基金supported by the National Natural Science Foundation of China(61304026)
文摘This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-forward compensation active disturbance rejection control(FFC-ADRC) approach is proposed. It combines advantages of the Smith predictor and the traditional active disturbance rejection control(ADRC). The tracking differentiator(TD) is designed to predict the control signal, which adds an anticipatory control to the control signal and allows a higher observer bandwidth to obtain better disturbance rejection. The modified extended state observer(ESO) is designed to estimate both system states and the total disturbances(internal disturbance, uncertainties and delayed disturbance). Then the Lyapunov theory and the theory of the input-output stability are applied to prove the asymptotic stability of the closed-loop control system. Finally, numerical simulations show the effectiveness and practicality of the proposed design.
基金Foundation item:Beijing Science and Technology Commission(No. H020620010120), the Significant International Projects of the National Natural Science Foundation of China(No. 50521140075), Beijing Municipal Education Commission(No. KZ200310005003) and Beijing Key Laboratories
文摘The control strategy and simulation of external carbon addition were specially studied in an anoxic-oxic(A/O) process with low carbon: nitrogen(C/N) domestic wastewater. The control strategy aimed to adjust the flow rate of external carbon dosage to the anoxic zone, thus the concentration of nitrate plus nitrite(NOx--N) in the anoxic zone was kept closed to the set point. The relationship was studied between the NOx--N concentration in the anoxic zone(S_ NO) and the dosage of external carbon, and the results showed that the removal efficiency of the total nitrogen(TN) could not be largely improved by double dosage of carbon source when S_ NO reached about 2 mg/L. Through keeping S_ NO at the level of about 2 mg/L, the demand of effluent quality could be met and the carbon dosage could be optimized. Based on the Activated Sludge Model No.1(ASM No.1), a simplified mathematical model of external carbon dosage was developed. Simulation results showed that PI controller and feed-forward PI controller both had good dynamic response and steady precision. And feed-forward PI controller had better control effects due to its consideration of influent disturbances.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072117,10802042,and 60904068)the Natural Science Foundation of Zhejiang Province,China (Grant No.Y6100023)+1 种基金the Natural Science Foundation of Ningbo,China (Grant No.2009B21003)the K.C.Wong Magna Fund in Ningbo University,China
文摘A modified coupled map car-following model is proposed, in which two successive vehicle headways in front of the considering vehicle is incorporated into the optimal velocity function. The steady state under certain conditions is obtained. An error system around the steady state is studied further. Moreover, the condition for the state having no traffic jam is derived. A new control scheme is presented to suppress the traffic jam in the modified coupled map car-following model under the open boundary. A control signal including the velocity differences between the following and the considering vehicles, and between the preceding and the considering vehicles is used. The condition under which the traffic jam can be well suppressed is analysed. The results are compared with that presented by t^onishi et al. (the KKH model). The simulation results show that the temporal behaviour obtained in our model is better than that in the KKH model. The simulation results are in good agreement with the theoretical analysis.
文摘Not so much had been talked about equilibrium in control area. On the basis of the phenomenon of balance, the concept of control-equilibrium and control-equilibrium of a control system is proposed. According to this theory, a perfect control method should not only guarantee stability of the system, but also ensure the control-equilibrium of the system. To achieve the control-equilibrium, feed-forward control is required.
文摘The paper presents a successful design and good result of grid voltage feed-forward control strategy with no damping regulator of LCL filter applied in Three-phase Pulse Width Modulation( PWM) rectifier under unbalance grid condition for renewable energy processing. It is demonstrated that the closed-loop current control is decoupled with the grid voltage feed-forward control,and good waveform of grid current with low order harmonics is obtained under unbalance grid condition. This novel strategy is simple and reliable,applied with PI regulator but no resonant controller in α,β two-phase stationary frame. Moreover,the results of experiment and simulation are also illustrated to validate the novel strategy well applied in the closed-loop current control system under unbalanced grid condition.
文摘To satisfy the requirements of motion control for industrial machine, a multi-axis motion controller based on DSP is developed in this paper. The motion controller consists of DSP which plays a main role in this design;DPRAM to make sure the rapid and reliable communication with host;FPGA to handle the task of address decoder and receiving feed-back encoder signal;and several peripheral logic circuits. In the part of hardware design, overall structure of motion control system is presented. Then, the Feed-Forward Proportional-Integral-Velocity (FFPIV) scheme which introduces KV in term of velocity loop to achieve the accurate, smooth and real-time response is proposed in the software developing part. The experiment data are carried out to indicate that this motion controller has advantages of superior performance and highly machining precision.
基金This project was supported by the Science Research Foundation of Inner Mongolia University for the nationalities grant no.NMDGP1704 the Inner Mongolia nature Science Foundation(grant no.2016MS0622)National nature Science Foundation grant no.51865046Science and technology innovation leading project of Inner Mongolia grant no.KCBJ2018028。
文摘Because the load of the oil beam pumping unit driven by pure electric motor changes sharply during operation,the power of the driving motor does not match and the energy efficiency is low.In this paper,a new type of wind-driven hydro-motor hybrid power system is proposed.The motor and the hydraulic motor are jointly driven,and the energy is recovered by a hydraulic pump with controllable displacement,so that the speed of the driving motor is relatively stable.In order to control the fan speed and keep up with the drastic changes of the outside wind speed,a control strategy of hybrid power system based on wind speed feed-forward compensation is proposed.Through simulation and experimental results,the following conclusions can be drawn:to begin with,the mathematic model is proved to be effective;next,simulation studies show that the proposed feed-forward control method can improve the response rate as well as reduce the response lag.This research can be a reference for the application of the feed-forward control method on the hybrid power system of beam pumping unit.system.
基金supported by the National Natural Science Foundation of China under Grant Nos.91848205,62222313,and 62173275.
文摘This paper researches the proportional-derivative(PD)feedback control with feed-forward compensations from input for a triangular tethered satellite system(TTSS),and the extended state observer(ESO)design which is further incorporated in control to estimate the structural uncertainties in system.By expanding Lagrangian equations under chosen variables,the dynamic equations of TTSS are derived which is the second-order nonlinear equation.Then the feedback control under typical feed-forward compensations is discussed as the nonlinear functions in system are counteracted,and the controlled outputs are computed by deriving the transfer functions of the transformed structures.Moreover,in case of the uncertain structures in system which may constrain the control e®ect,ESO-based PD control is further proposed,and the observed error and controlled accuracy are analyzed by Lyapunov functions.Simulation results on the designed controls are presented to validate the theoretic analyses.
文摘The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach.This research is divided into two modules.The first module focuses on the design of a motion controller for the Physik Instrumente(PI)-based Stewart platform.In contrast,the second module deals with the development of a machine-learning-based spatial object tracking algorithm by collecting information from the Zed 2 stereo vision system.Presently,simple feed-forward neural networks(NN)are used to predict the orientation of the top table of the platform.While training,the x,y,and z coordinates of the three-dimensional(3D)object,extracted from images,are used as the input to the NN.In contrast,the orientation information of the platform(that is,rotation about the x,y,and z-axes)is considered as the output from the network.The orientation information obtained from the network is fed to the inverse kinematics-based motion controller(module 1)to move the platform while tracking the object.After training,the optimised NN is used to track the continuously moving 3D object.The experimental results show that the developed NN-based controller has successfully tracked the moving spatial object with reasonably good accuracy.
基金supported by the Major Program of National Natural Science Foundation of China(No.U2166601)the General Program of National Natural Science Foundation of China(No.52077196).
文摘In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios.
基金supported by National Natural Science Foundation of China under grant No.61704161Key Project of Natural Science of Anhui Provincial Department of Education under grant No.KJ2017A396
文摘A feed-forward Common-Mode (CM) charge control circuit for a high-speed Charge-Domain (CO) pipelined Analog-to-Digital Converter (ADC) is presented herein. This study aims at solving the problem whereby the precision of CD pipelined ADCs is restricted by the variation in input CM charge, which can compensate for CM charge errors caused by a variation in CM charge input in real time. Based on the feed-forward CM charge control circuit, a 12-bit 250-MS/s CD pipelined ADC is designed and realized using a 1P6M 0.18-μm CMOS process. The ADC achieved a Spurious Free Dynamic Range (SFDR) of 78.1 dB and a Signal-to-Noise-and-Distortion Ratio (SNDR) of 64.6 dB for a 20.1-MHz input; a SFDR of 74.9 dB and SNDR of 62.0 dB were achieved for a 239.9-MHz input at full sampling rate. The variation in signal-to-noise ratio was less than 3 dB over a 0-1.2 V input CM voltage range. The power consumption of the prototype ADC is only 85 mW at 1.8 V supply, and it occupies an active die area of 2.24 mm^2.
基金Funded by the National High-tech R&D Program ("863" Program) of China (No.2006AA04Z314)
文摘A fast tool servo (FTS) system is developed for the fabrication of non-rotationally symmetric micro-structured surfaces using single-point diamond turning machines.The constructed FTS employs a piezoelectric tube actuator (PZT) to actuate the diamond tool and a capacitive probe as the feedback sensor.To compensate the inherent nonlinear hysteresis behavior of the piezoelectric actuator,Proportional Integral (PI) feedback control is implemented.Besides,a feed-forward control based on a simple feed-forward predictor has been added to achieve better tracking performance.Experimental results indicate that error motions in the performance of the system caused by hysteresis can be reduced greatly and the micro-structured surface is successfully fabricated by implementing the FTS.
基金supported by the Shanghai Education Committee Scientific Research Subsidization (Grant No.05AZ30)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060280018)
文摘In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.
基金supported by US National Science Foundation under Grant No.HRD-0932339the National Natural Science Foundation of China under Grant Nos.61374038,61374050,61273119,61174076+1 种基金the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2011253Research Fund for the Doctoral Program of Higher Education of China under Grant No.20110092110021
文摘The dynamic linear state feedback control problem is addressed for a class of nonlinear systems subject to time-delay.First,using the dynamic change of coordinates,the problem of global state feedback stabilization is solved for a class of time-delay systems under a type of nonhomogeneous growth conditions.With the aid of an appropriate Lyapunov-Krasovskii functional and the adaptive strategy used in coordinates,the closed-loop system can be globally asymptotically stabilized by the dynamic linear state feedback controller.The growth condition in perturbations are more general than that in the existing results.The correctness of the theoretical results are illustrated with an academic simulation example.