Time-interleaved structure can promote the equivalent processing speed of a digital signal processing system. An improved time-interleaved error feedback delta sigma modulator( TI-EF-DSM)for digital transmitter applic...Time-interleaved structure can promote the equivalent processing speed of a digital signal processing system. An improved time-interleaved error feedback delta sigma modulator( TI-EF-DSM)for digital transmitter application is presented in this paper. Two TI-EF-DSMs are compared,one is a conventional directly implemented and the other is the improved. The processing speed of the proposed two-channel improved time-interleaved error feedback delta sigma modulator( ITI-EF-DSM) is higher than the conventional directly implemented TI-EF-DSM for shortened critical path. A digital transmitter based on the ITI-EF-DSM is implemented on field progrmmable gate array( FPGA). The long term evolution( LTE) signals with different bandwidths of 5 MHz,10 MHz and 20 MHz are used as the signal source to evaluate the transmitter. The achieved SNR is 41 dB for the 20 MHz LTE signal with the processing clock of only 184 MHz.展开更多
A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13mA. The output power exceeds 10mW at 0V bias when...A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13mA. The output power exceeds 10mW at 0V bias when the injection current of the distributed feedback laser is 100mA at 25℃. The side mode suppression ratio is over 50 dB. A 32Gb/s eye diagram is measured with a 3.SVpp nonreturn-to-zero pseudorandom modulation signal at -2.3 V bias. A clearly opening eyediagram with a dynamic extinction ratio of 8.01 dB is obtained.展开更多
The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the l/f noise and the tem- perature effect. For massive applications, the bias drift urgently needs to be improved. Conventional...The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the l/f noise and the tem- perature effect. For massive applications, the bias drift urgently needs to be improved. Conventional methods often cannot ad- dress the l/f noise and temperature effect in one architecture. In this paper, a combined approach on closed-loop architecture modification is proposed to minimize the bias drift. The modulated feedback approach is used to isolate the l/f noise that exists in the conventional direct feedback approach. Then a common mode signal is created and added into the closed loop on the basis of modulated feedback architecture, to compensate for the temperature drift. With the combined approach, the bias instability is improved to less than 13 μg, and the drift of the Allan variance result is reduced to 17 μg at 100 s of the integration time. The temperature coefficient is reduced from 4.68 to 0.1 mg/℃. The combined approach could be useful for many other closed-loop accelerometers.展开更多
We report a direct, modulated bandwidth enhancement in a amplified feedback laser (AFL), both experimen- tally and numerically. By means of fabricated devices, an enhanced -3 dB bandwidth of 27 GHz with an in-band f...We report a direct, modulated bandwidth enhancement in a amplified feedback laser (AFL), both experimen- tally and numerically. By means of fabricated devices, an enhanced -3 dB bandwidth of 27 GHz with an in-band flatness of ±3 dB is experimentally confirmed at 13℃. It is numerically confirmed that the modulated bandwidth of the AFL can be enhanced to two times its original bandwidth, with more controlled flexibility to realize a flat, small-signal response.展开更多
基金Supported by the National Natural Science Foundation of China(No.61674037)the National Key Research and Development Program of China(No.2016YFC0800400)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Power Grid Corp Science and Technology Project(No.SGTYHT/16-JS-198)the State Grid Nanjing Power Supply Company Project(No.1701052)
文摘Time-interleaved structure can promote the equivalent processing speed of a digital signal processing system. An improved time-interleaved error feedback delta sigma modulator( TI-EF-DSM)for digital transmitter application is presented in this paper. Two TI-EF-DSMs are compared,one is a conventional directly implemented and the other is the improved. The processing speed of the proposed two-channel improved time-interleaved error feedback delta sigma modulator( ITI-EF-DSM) is higher than the conventional directly implemented TI-EF-DSM for shortened critical path. A digital transmitter based on the ITI-EF-DSM is implemented on field progrmmable gate array( FPGA). The long term evolution( LTE) signals with different bandwidths of 5 MHz,10 MHz and 20 MHz are used as the signal source to evaluate the transmitter. The achieved SNR is 41 dB for the 20 MHz LTE signal with the processing clock of only 184 MHz.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2011AA010303and 2012AA012203the National Basic Research Program of China under Grant No 2011CB301702the National Natural Science Foundation of China under Grant Nos 61321063 and 6132010601
文摘A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13mA. The output power exceeds 10mW at 0V bias when the injection current of the distributed feedback laser is 100mA at 25℃. The side mode suppression ratio is over 50 dB. A 32Gb/s eye diagram is measured with a 3.SVpp nonreturn-to-zero pseudorandom modulation signal at -2.3 V bias. A clearly opening eyediagram with a dynamic extinction ratio of 8.01 dB is obtained.
文摘The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the l/f noise and the tem- perature effect. For massive applications, the bias drift urgently needs to be improved. Conventional methods often cannot ad- dress the l/f noise and temperature effect in one architecture. In this paper, a combined approach on closed-loop architecture modification is proposed to minimize the bias drift. The modulated feedback approach is used to isolate the l/f noise that exists in the conventional direct feedback approach. Then a common mode signal is created and added into the closed loop on the basis of modulated feedback architecture, to compensate for the temperature drift. With the combined approach, the bias instability is improved to less than 13 μg, and the drift of the Allan variance result is reduced to 17 μg at 100 s of the integration time. The temperature coefficient is reduced from 4.68 to 0.1 mg/℃. The combined approach could be useful for many other closed-loop accelerometers.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61474111,61201103,61335009,61274045)the National973 Program of China(Grant No.2011CB301702)the National 863 Program of China(Grant No.2013AA014202)
文摘We report a direct, modulated bandwidth enhancement in a amplified feedback laser (AFL), both experimen- tally and numerically. By means of fabricated devices, an enhanced -3 dB bandwidth of 27 GHz with an in-band flatness of ±3 dB is experimentally confirmed at 13℃. It is numerically confirmed that the modulated bandwidth of the AFL can be enhanced to two times its original bandwidth, with more controlled flexibility to realize a flat, small-signal response.