Die filling is a critical stage during powder compaction,which can significantly affect the product quality and efficiency.In this paper,a forced feeder is introduced attempting to improve the filling performance of a...Die filling is a critical stage during powder compaction,which can significantly affect the product quality and efficiency.In this paper,a forced feeder is introduced attempting to improve the filling performance of a lab-scale die filling system.The die filling process is analysed with a graphics processing units(GPU)enhanced discrete element method(DEM).Various stirrer designs are assessed for a wide range of process settings(i.e.,stirrer speed,filling speed)to explore their influence on the die filling performance of free-flowing powder.Numerical results show that die filing with the novel helical-ribbon(i.e.,type D)stirrer design exhibits the highest filling ratio,implying that it is the most robust stirrer design for the feeder configuration considered.Furthermore,die filling performance with the type D stirrer design is a function of the stirrer speed and the filling speed.A positive variation of filling ratio(ηf>0%)can be ensured over the whole range of filling speed by adjusting the stirrer speed(i.e.,increasing the stirrer speed).The approach used in this study can not only help understand how the stirrer design affects the die filling performance but also guide the optimization of feeder system and process settings.展开更多
The force feed lubrication method is used for drawing aluminum clad steel wire. It is studied how deformation of wire and aspect of the lubricant film are influenced by the die angle, the reduction, the drawing spee...The force feed lubrication method is used for drawing aluminum clad steel wire. It is studied how deformation of wire and aspect of the lubricant film are influenced by the die angle, the reduction, the drawing speed and the gap between pressure die and wire. It has been concluded that when the factors above mentioned promote to thicken lubricant film, the drawing force is reduced and this favors the homogenous deformation of aluminum coating and steel core.展开更多
基金the financial support from Genentech Ltd.,the Engineering and Physical Science Research Council(Grant No.EP/M02976X)the Marie Skłodowska-Curie Individual Fellowships under European Union's Horizon 2020 research and innovation programme(Grant No.840264)。
文摘Die filling is a critical stage during powder compaction,which can significantly affect the product quality and efficiency.In this paper,a forced feeder is introduced attempting to improve the filling performance of a lab-scale die filling system.The die filling process is analysed with a graphics processing units(GPU)enhanced discrete element method(DEM).Various stirrer designs are assessed for a wide range of process settings(i.e.,stirrer speed,filling speed)to explore their influence on the die filling performance of free-flowing powder.Numerical results show that die filing with the novel helical-ribbon(i.e.,type D)stirrer design exhibits the highest filling ratio,implying that it is the most robust stirrer design for the feeder configuration considered.Furthermore,die filling performance with the type D stirrer design is a function of the stirrer speed and the filling speed.A positive variation of filling ratio(ηf>0%)can be ensured over the whole range of filling speed by adjusting the stirrer speed(i.e.,increasing the stirrer speed).The approach used in this study can not only help understand how the stirrer design affects the die filling performance but also guide the optimization of feeder system and process settings.
文摘The force feed lubrication method is used for drawing aluminum clad steel wire. It is studied how deformation of wire and aspect of the lubricant film are influenced by the die angle, the reduction, the drawing speed and the gap between pressure die and wire. It has been concluded that when the factors above mentioned promote to thicken lubricant film, the drawing force is reduced and this favors the homogenous deformation of aluminum coating and steel core.