Agarases are hydrolytic enzymes that act on the hydrolysis of agar and have a broad range of applications in food,cosmetics and pharmaceutical industries. In this study, a glycerol feeding strategy based on induction ...Agarases are hydrolytic enzymes that act on the hydrolysis of agar and have a broad range of applications in food,cosmetics and pharmaceutical industries. In this study, a glycerol feeding strategy based on induction mode optimization for high cell density and β-agarase production was established, which could effectively control acetate yield. First, exponential feeding strategy of glycerol with different overall specific growth rates(μ) was applied in the pre-induction phase. The results showed that the low μ(μ=0.2) was suggested to be the optimal for cell growth and β-agarase production. Second, the effects of induction temperature and the inducer concentration on cell growth and β-agarase production were investigated in the post-induction phase. When induced by isopropyl-β-d-thiogalactoside(IPTG), the strategy of 0.8 mmol/L IPTG induction at 20℃ was found to be optimal for β-agarase production. When cultivation was induced by continuous lactose feeding strategy of 1.0 g/(L·h), the β-agarase activity reached 112.5 U/mL, which represented the highest β-agarase production to date.Furthermore, the β-agarase was capable of degrading G. lemaneiformis powder directly to produce neoagarooligosaccharide, and the hydrolysates were neoagarotetraose(NA4) and neoagarohexaose(NA6). The overall research may be useful for the industrial production and application of β-agarase.展开更多
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multip...Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model.展开更多
Optimal glucose feed strategy for glycerol fed-batch fermentation was investigated by Pontryagin’s maximum principle to maximize the final glycerol yield. The problem was solved by a nonsingular control approach by s...Optimal glucose feed strategy for glycerol fed-batch fermentation was investigated by Pontryagin’s maximum principle to maximize the final glycerol yield. The problem was solved by a nonsingular control approach by selecting the culture volume as the control variable, then the general optimal feed profile was numerically determined.展开更多
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.201505026the Fujian Province Natural Science Foundation under contract Nos 2016J01160 and 2017N0015the Scientific Research Foundation of Third Institute of Oceanography,SOA under contract No.2016038
文摘Agarases are hydrolytic enzymes that act on the hydrolysis of agar and have a broad range of applications in food,cosmetics and pharmaceutical industries. In this study, a glycerol feeding strategy based on induction mode optimization for high cell density and β-agarase production was established, which could effectively control acetate yield. First, exponential feeding strategy of glycerol with different overall specific growth rates(μ) was applied in the pre-induction phase. The results showed that the low μ(μ=0.2) was suggested to be the optimal for cell growth and β-agarase production. Second, the effects of induction temperature and the inducer concentration on cell growth and β-agarase production were investigated in the post-induction phase. When induced by isopropyl-β-d-thiogalactoside(IPTG), the strategy of 0.8 mmol/L IPTG induction at 20℃ was found to be optimal for β-agarase production. When cultivation was induced by continuous lactose feeding strategy of 1.0 g/(L·h), the β-agarase activity reached 112.5 U/mL, which represented the highest β-agarase production to date.Furthermore, the β-agarase was capable of degrading G. lemaneiformis powder directly to produce neoagarooligosaccharide, and the hydrolysates were neoagarotetraose(NA4) and neoagarohexaose(NA6). The overall research may be useful for the industrial production and application of β-agarase.
基金Supported by the National Natural Science Foundation of China(21276078)"Shu Guang"project of Shanghai Municipal Education Commission,973 Program of China(2012CB720500)the Shanghai Science and Technology Program(13QH1401200)
文摘Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model.
基金From National Ninth Five Years Project (NO. 96-03-03-03A).
文摘Optimal glucose feed strategy for glycerol fed-batch fermentation was investigated by Pontryagin’s maximum principle to maximize the final glycerol yield. The problem was solved by a nonsingular control approach by selecting the culture volume as the control variable, then the general optimal feed profile was numerically determined.