The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly re...The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.展开更多
We evaluate the effects of the holes geometry drilled by a femtosecond laser on a stainless alloy with various defocused irradiation time, which ranges from 0 min to 1 h. The laser ablation efficiency is increased by ...We evaluate the effects of the holes geometry drilled by a femtosecond laser on a stainless alloy with various defocused irradiation time, which ranges from 0 min to 1 h. The laser ablation efficiency is increased by a factor of3 when the irradiation time is elevated from 0 to 30 min. Also, the morphology of the hole is observed by a scanning electron microscope, where the result indicates that the defocused irradiation time has a significant influence on the morphology changes. The reason for such changes is discussed based on the pretreatment effect and the confined plasma plume. As an application example, the microchannel is fabricated by a femtosecond laser combined with the defocused irradiation to demonstrate the advantage of the proposed method in fabricating functional structures.展开更多
We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the c...We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the chemical reaction of the femtosecond laser-induced structure change zone and hydrofluoric acid solution. The morphologies of the through micro-holes and micro-hole arrays are characterized by using scanning electronic microscopy, The effects of the pulse number on the depth and diameter of the holes are investigated. Honeycomb arrays of through micro-holes fabricated at different laser powers and pulse numbers are demonstrated.展开更多
Carnivorous plants,for instance,Dionaea muscipula and Nepenthes pitcher plant,inspired the innovation of advanced stimuli-responsive actuators and lubricant-infused slippery surfaces,respectively.However,hybrid bionic...Carnivorous plants,for instance,Dionaea muscipula and Nepenthes pitcher plant,inspired the innovation of advanced stimuli-responsive actuators and lubricant-infused slippery surfaces,respectively.However,hybrid bionic devices that combine the active and passive prey trapping capabilities of the two kinds of carnivorous plants remain a challenge.Herein,we report a moisture responsive shape-morphing slippery surface that enables both moisture responsive shapemorphing and oil-lubricated water repellency for simultaneous active-and passive-droplet manipulation.The moisture deformable slippery surface is prepared by creating biomimetic microstructures on graphene oxide(GO)membrane via femtosecond laser direct writing and subsequent lubricating with a thin layer of oil on the laser structured reduced GO(LRGO)surface.The integration of a lubricant-infused slippery surface with an LRGO/GO bilayer actuator endows the actuator with droplet sliding ability and promotes the moisture deformation performance due to oil-enhanced water repellency of the inert layer(LRGO).Based on the shape-morphing slippery surface,we prepared a series of proof-of-concept actuators,including a moisture-response Dionaea muscipula actuator,a smart frog tongue,and a smart flower,demonstrating their versatility for active/passive trapping,droplet manipulation,and sensing.展开更多
基金supported by the Beijing Municipal Natural Science Foundation(JQ20015)National Key Research and Development Program of China(No.2022YFB4601300)+3 种基金the National Science Fund for Distinguished Young Scholars(No.52325505)the National Natural Science Foundation of China(NSFC)(No.52075041)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2037205)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No2021WNLOKF016)。
文摘The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.91323301and 51505505)the Fundamental Research Funds for the Central Universities of Central South University
文摘We evaluate the effects of the holes geometry drilled by a femtosecond laser on a stainless alloy with various defocused irradiation time, which ranges from 0 min to 1 h. The laser ablation efficiency is increased by a factor of3 when the irradiation time is elevated from 0 to 30 min. Also, the morphology of the hole is observed by a scanning electron microscope, where the result indicates that the defocused irradiation time has a significant influence on the morphology changes. The reason for such changes is discussed based on the pretreatment effect and the confined plasma plume. As an application example, the microchannel is fabricated by a femtosecond laser combined with the defocused irradiation to demonstrate the advantage of the proposed method in fabricating functional structures.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921804the National Natural Science Foundation of China under Grant Nos 11204236 and 61308006the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the chemical reaction of the femtosecond laser-induced structure change zone and hydrofluoric acid solution. The morphologies of the through micro-holes and micro-hole arrays are characterized by using scanning electronic microscopy, The effects of the pulse number on the depth and diameter of the holes are investigated. Honeycomb arrays of through micro-holes fabricated at different laser powers and pulse numbers are demonstrated.
基金the National Natural Science Foundation of China(NSFC)under Grant Nos.#61905087,and#61935008Tsinghua University(School of Materials Science and Engineering)-AVIC Aerodynamics Research Institute Joint Research Center for Advanced Materials and AntiIcing Nos.#JCAMAI-2020-03+2 种基金Fundamental Research Funds for the Central Universities Nos.#2020-JCXK-18Jilin Province Development and Reform Commission Project Nos.#2022C047-4Key Laboratory of Icing and Anti/De-icing of CARDC Nos.#IADL 20210404。
文摘Carnivorous plants,for instance,Dionaea muscipula and Nepenthes pitcher plant,inspired the innovation of advanced stimuli-responsive actuators and lubricant-infused slippery surfaces,respectively.However,hybrid bionic devices that combine the active and passive prey trapping capabilities of the two kinds of carnivorous plants remain a challenge.Herein,we report a moisture responsive shape-morphing slippery surface that enables both moisture responsive shapemorphing and oil-lubricated water repellency for simultaneous active-and passive-droplet manipulation.The moisture deformable slippery surface is prepared by creating biomimetic microstructures on graphene oxide(GO)membrane via femtosecond laser direct writing and subsequent lubricating with a thin layer of oil on the laser structured reduced GO(LRGO)surface.The integration of a lubricant-infused slippery surface with an LRGO/GO bilayer actuator endows the actuator with droplet sliding ability and promotes the moisture deformation performance due to oil-enhanced water repellency of the inert layer(LRGO).Based on the shape-morphing slippery surface,we prepared a series of proof-of-concept actuators,including a moisture-response Dionaea muscipula actuator,a smart frog tongue,and a smart flower,demonstrating their versatility for active/passive trapping,droplet manipulation,and sensing.