期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of dietary forage to concentrate ratio and wildrye length on nutrient intake, digestibility, plasma metabolites, ruminal fermentation and fecal microflora of male Chinese Holstein calves 被引量:7
1
作者 XIA Chuan-qi Aziz-Ur-Rahman Muhammad +4 位作者 NIU Wen-jing SHAO Tao-qi QIU Qing-hua SU Hua-wei CAO Bing-hai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期415-427,共13页
Twenty-eight male, weaned Chinese Holstein calves((156.8±33.4) kg) were used to investigate the effects of dietary forage to concentrate ratio(F:C) and forage length on nutrient digestibility, plasma metab... Twenty-eight male, weaned Chinese Holstein calves((156.8±33.4) kg) were used to investigate the effects of dietary forage to concentrate ratio(F:C) and forage length on nutrient digestibility, plasma metabolites, ruminal fermentation, and fecal microflora. Animals were randomly allocated to four treatments in a 2×2 factorial arrangement: whole-length forage(WL) with low F:C(50:50); WL with high F:C(65:35); short-length forage(SL) with high F:C(65:35); and SL with low F:C(50:50). Chinese wildrye was used as the only forage source in this trial. The grass in the SL treatments was chopped using a chaff cutter to achieve small particle size(-50% particles 〉19 mm). Dry matter intake(DMI) and organic matter(OM) intake was increased by increasing both F:C(P〈0.01) and forage length(FL)(P〈0.05), while acid detergent fiber(ADF) and neutral detergent fiber(NDF) intakes were only increased by increasing the F:C(P〈0.01). The digestibility of NDF was increased as the FL increased(P〈0.01), and it was also affected by interaction between F:C and FL(P〈0.05). Cholesterol(CHO)(P〈0.01), leptin(LP)(P〈0.05), and growth hormone(GH)(P〈0.01) concentrations in plasma were increased as dietary F:C increased. A significant increase in plasma triglyceride(TG)(P〈0.01), insulin(INS)(P〈0.05), and GH(P〈0.01) levels was observed with decreasing dietary FL. Ruminal p H values of calves fed with low F:C diets were significantly lower than those in high F:C treatment(P〈0.05). Increasing the F:C enhanced ruminal acetic acid(P〈0.05) and acetic acid/propionic acid(P〈0.01). Fecal Lactobacillus content was significantly higher, while Escherichia coli and Salmonella contents were significantly lower in WL and high F:C groups(P〈0.05). Lower fecal scores(higher diarrhea rate) were observed in calves fed with SL hay compared to WL hay(P〈0.05). Denatured gradient gel electrophoresis(DGGE) bands and richness index(S) were significantly affected by the interaction between F:C and FL(P〈0.05), under high F:C, band numbers and richness index from WL group were higher than that from SL group(P〈0.05), whereas there were no differences between WL andSL groups under low F:C(P〉0.05). Microflora similarity was 50–73% among the different treatments. It is concluded that the WL with high F:C(65:35) diet is suitable for weaned calves. 展开更多
关键词 forage to concentrate ratio forage length nutrient digestibility plasma metabolites ruminal fermentation fecal microflora male Holstein calves
下载PDF
Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation 被引量:3
2
作者 Yasuo Kobayashi Seongjin Oh +1 位作者 Htun Myint Satoshi Koike 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第2期317-326,共10页
In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting... In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting protein degradation to avoid excess release of ammonia, and activation of fiber digestion. The main approach has been the use of dietary supplements. Since growth-promoting antibiotics were banned in European countries in2006, safer alternatives including plant-derived materials have been explored. Plant oils, their component fatty acids,plant secondary metabolites and other compounds have been studied, and many originate or are abundantly available in Asia as agricultural byproducts. In this review, the potency of selected byproducts in inhibition of methane production and protein degradation, and in stimulation of fiber degradation was described in relation to their modes of action. In particular, cashew and ginkgo byproducts containing alkylphenols to mitigate methane emission and bean husks as a source of functional fiber to boost the number of fiber-degrading bacteria were highlighted. Other byproducts influencing rumen microbiota and fermentation profile were also described. Future application of these feed and additive candidates is very dependent on a sufficient, cost-effective supply and optimal usage in feeding practice. 展开更多
关键词 Agricultural byproduct fermentation Fiber degradation Methane mitigation Microbiota Plant secondary metabolites Rumen
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部