期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Penicillin fermentation residue biochar as a high-performance electrode for membrane capacitive deionization
1
作者 Jie Liu Junjun Ma +5 位作者 Weizhang Zhong Jianrui Niu Zaixing Li Xiaoju Wang Ge Shen Chun Liu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第4期155-165,共11页
Membrane capacitive deionization(MCDI)is an efficient desalination technology for brine.Penicillin fermentation residue biochar(PFRB)possesses a hierarchical porous and O/N-doped structure which could serve as a high-... Membrane capacitive deionization(MCDI)is an efficient desalination technology for brine.Penicillin fermentation residue biochar(PFRB)possesses a hierarchical porous and O/N-doped structure which could serve as a high-capacity desalination electrode in the MCDI system.Under optimal conditions(electrode weight,voltage,and concentration)and a carbonization temperature of 700℃,the maximum salt adsorption capacity of the electrode can reach 26.4 mg/g,which is higher than that of most carbon electrodes.Furthermore,the electrochemical properties of the PFRB electrode were characterized through cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)with a maximum specific capacitance of 212.18 F/g.Finally,biotoxicity tests have showed that PFRB was non-biotoxin against luminescent bacteria and the MCDI system with the PFRB electrode remained stable even after 27 adsorption–desorption cycles.This study provides a novel way to recycle penicillin residue and an electrode that can achieve excellent desalination. 展开更多
关键词 Membrane capacitive deionization(MCDI) Penicillin fermentation residue biochar (PFRB) Hierarchical porous O/N-doped DESALINATION
原文传递
Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues 被引量:1
2
作者 Kun Jun Han Michael E McCormick 《Journal of Animal Science and Biotechnology》 SCIE CAS 2014年第4期448-453,共6页
Background:Algae are widely recognized for their high oil content and for exponentially accumulating biomass with particular potential to provide single cell protein for human consumption or animal feed.It is believe... Background:Algae are widely recognized for their high oil content and for exponentially accumulating biomass with particular potential to provide single cell protein for human consumption or animal feed.It is believed that along with biodiesel from algae,the high protein de-oiled algal residue may become an alternative feed supplement option in the future.This study was conducted to investigate de-oiled algal residue obtained from the common Chlorella species,Thalassiosira weissflogii,Selenarstrum capricornutum,Scenedesmus sp.,and Scenedesmus dimorphus for assessment as potential feed supplements for ruminants by comparing with soybean(Glycine max) meal and alfalfa(Medicago sativa) hay.Results:With the exception of T.weissflogii,algal residue had higher concentrations of Cu,Zn,and Mn and lower concentration of Ca,Mg,and K than soybean meal and alfalfa hay.The algal residue CP(crude protein)concentrations ranged from 140 to 445 g/kg DM and varied among the de-oiled residues.In vitro rumen fermentation gas accumulation curves indicated that algal biomass degradation potential was less than that of soybean meal or alfalfa hay by up to 41.7%.The gas production curve,interpreted with a dual pool logistic model,confirmed that the fraction sizes for fast fermenting and slow fermenting of de-oiled algal residues were smaller than those in soybean meal and alfalfa hay,and the fermenting rate of the fractions was also low.Conclusions:Inferior in vitro rumen gas accumulation from the five de-oiled algal residues suggests that these algal byproducts are less degradable in the rumen. 展开更多
关键词 Crude protein De-oiled algal residue Feed supplement in vitro rumen fermentation gas Macro mineral Micro mineral
下载PDF
Extraction and Characterization of Biological Humic Acids from Fermented Furfural Residue 被引量:1
3
作者 张院萍 张晓忠 《Agricultural Science & Technology》 CAS 2015年第6期1180-1182,1232,共4页
Objective] This study aimed to eliminate the negative effects brought about by continuous, long-term accumulation of sodium ions in soil on soil environ-ment. [Method] Biological humic acids (BHAs) were extracted fr... Objective] This study aimed to eliminate the negative effects brought about by continuous, long-term accumulation of sodium ions in soil on soil environ-ment. [Method] Biological humic acids (BHAs) were extracted from fermented furfural residue via alkali-dissolution and acidification. The effects of solid-liquid ratio (mass ratio of fermented furfural residue to water), alkali concentration, extraction tempera-ture and extraction time on the content of BHA were investigated. Also its structure was characterized by FTIR. [Result] The optimal extraction conditions were as fol-lows: solid-liquid ratio of 1:7, KOH concentration of 6%, extraction temperature of 70℃ and extraction time of 1 h. Under the optimal conditions, the content of BHAs extracted was up to 8.5%. The infrared spectrum analysis indicated that BHA had more types of functional groups and lower molecular weight than commercial humic acid although they had similar structures. [Conclusion] The technique has the ad-vantages of simple operation and good stability, and is suitable for extracting BHAs. BHAs have a good prospect in developing new types of humic acid fertilizers. 展开更多
关键词 Fermented furfural residue Biological humic acid EXTRACTION Characteri-zation
下载PDF
Study on Extraction of Biological Humic Acids from Fermented Furfural Residue
4
作者 张院萍 崔刚 +1 位作者 张国兰 豆亚妮 《Agricultural Science & Technology》 CAS 2016年第6期1442-1445,共4页
[Objective] This study was conducted to obtain the optimal process for the preparation of biological humic acids (BHAs) from fermented furfural residue by al- kali-dissolution and acidification. [Method] BHAs were e... [Objective] This study was conducted to obtain the optimal process for the preparation of biological humic acids (BHAs) from fermented furfural residue by al- kali-dissolution and acidification. [Method] BHAs were extracted from fermented furfural residue by the alkali-dissolution and acidification method, to investigate the effects of solid-liquid ratio (mass ratio of fermented furfural residue to water), alkali concentration, extraction temperature and extraction time on the extraction rate of BHAs by an orthogonal experiment, and then a solid BHA product was obtained by acidification of its extract followed by solid-liquid separation and oven-drying. [Result] The results showed that the optimal extracting conditions were as follows: solid-liquid ratio of 1:8, alkali concentration of 8% KOH, with extracting temperature at 70℃ and extracting time of 2.5 h in the alkali-dissolution step, and in the acidification step, the pH of the BHA mixture was 2.5. Under the optimal conditions, the content of solid BHAs was 76%, and the extraction rate of BHAs was 49%. [Conclusion] This study provides a theoretical basis for the separation and purification of BHAs from fermented furfural residue by the alkali dissolution and acidification method. 展开更多
关键词 Biological humic acids Alkali dissolution and acidification Orthogonal experiment Fermented furfural residue
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部