An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface ...An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface method-ology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO47H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM, showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO47H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth.展开更多
In order to improve the yield of β-mannase and to investigate the rules of fermentation production, a high-yield β-mannase producing strain, Bacillus licheniformis HDYM-04, was used to investigate the kinetics model...In order to improve the yield of β-mannase and to investigate the rules of fermentation production, a high-yield β-mannase producing strain, Bacillus licheniformis HDYM-04, was used to investigate the kinetics models based on the optimal fermentation conditions: HDYM-04 strain was fermented at 37℃ for 30 h with agitation speed at 300 r/min and aeration rate at 3 L/min in a 5 L fermenter, the initial addition amount of konjac flour was 2%(w/v), the initial pH of medium was 8.0, and the inoculum concentration was 6.7%(v/v). Three batch fermentation kinetic models were established (cell growth kinetic model, substrate consumption kinetic model, product formation kinetic model) bases on Logistic and Luedeking-Piret equations. To be specific, cell growth kinetic model was dX/dt =0.431X (1- X/ 15.522 ), substrate consumption kinetic model was -ds/dt =1.11 dX/dt +0.000 2 dP/dt +0.000 8X, and product formation kinetic model was dP/dt=133.1 dX +222.87X. The correlation coefficients R^2 of the three equations were 0.990 21, 0.989 08 and 0.988 12, respectively, which indicated a good correlation between experimental values and models. Therefore, the three equations could be used to describe the processes of cell growth, enzyme synthesis and substrate consumption during batch fermentation using B. licheniformis strain HDYM-04. The establishment of batch fermentation kinetic models (cell growth kinetic model, substrate depletion kinetic model, product formation kinetic model) could lay the theoretical foundation and provide practical reference for the applica- tion of HDYM-04 in fermentation industry.展开更多
Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances inclu...Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research.展开更多
The effect of salinity on sludge alkaline fermentation at low temperature(20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride(Na Cl, 0–25 g/L) were added into the...The effect of salinity on sludge alkaline fermentation at low temperature(20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride(Na Cl, 0–25 g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand(SCOD) increased with salinity. The hydrolysate(soluble protein, polysaccharide) and the acidification products(short chain fatty acids(SCFAs), NH+4–N, and PO_4^(3-)–P) increased with salinity initially, but slightly declined respectively at higher level salinity(20 g/L or 20–25 g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt.Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH+4–N on SCFA accumulation was increased.展开更多
文摘An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface method-ology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO47H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM, showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO47H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth.
基金Supported by Educational Commission of Heilongjiang Province of China(11551z011)
文摘In order to improve the yield of β-mannase and to investigate the rules of fermentation production, a high-yield β-mannase producing strain, Bacillus licheniformis HDYM-04, was used to investigate the kinetics models based on the optimal fermentation conditions: HDYM-04 strain was fermented at 37℃ for 30 h with agitation speed at 300 r/min and aeration rate at 3 L/min in a 5 L fermenter, the initial addition amount of konjac flour was 2%(w/v), the initial pH of medium was 8.0, and the inoculum concentration was 6.7%(v/v). Three batch fermentation kinetic models were established (cell growth kinetic model, substrate consumption kinetic model, product formation kinetic model) bases on Logistic and Luedeking-Piret equations. To be specific, cell growth kinetic model was dX/dt =0.431X (1- X/ 15.522 ), substrate consumption kinetic model was -ds/dt =1.11 dX/dt +0.000 2 dP/dt +0.000 8X, and product formation kinetic model was dP/dt=133.1 dX +222.87X. The correlation coefficients R^2 of the three equations were 0.990 21, 0.989 08 and 0.988 12, respectively, which indicated a good correlation between experimental values and models. Therefore, the three equations could be used to describe the processes of cell growth, enzyme synthesis and substrate consumption during batch fermentation using B. licheniformis strain HDYM-04. The establishment of batch fermentation kinetic models (cell growth kinetic model, substrate depletion kinetic model, product formation kinetic model) could lay the theoretical foundation and provide practical reference for the applica- tion of HDYM-04 in fermentation industry.
基金supported by grants from the National Natural Science Foundation of China(32172340)。
文摘Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research.
基金supported by the National Natural Science Foundation of China (No. 51178007)
文摘The effect of salinity on sludge alkaline fermentation at low temperature(20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride(Na Cl, 0–25 g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand(SCOD) increased with salinity. The hydrolysate(soluble protein, polysaccharide) and the acidification products(short chain fatty acids(SCFAs), NH+4–N, and PO_4^(3-)–P) increased with salinity initially, but slightly declined respectively at higher level salinity(20 g/L or 20–25 g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt.Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH+4–N on SCFA accumulation was increased.