It was in flask optimization tests proved that 2% serum, pH 7.0, 5:10 000 inoculation concentration of infectious bursal disease virus (IBDV) and 108 hours cultivation for IBDV harvest after its inoculation were the o...It was in flask optimization tests proved that 2% serum, pH 7.0, 5:10 000 inoculation concentration of infectious bursal disease virus (IBDV) and 108 hours cultivation for IBDV harvest after its inoculation were the optimal conditions when IBDV was propagated on Vero cells. 250 ml self-made spinner bottle and 5 L stirring fermentor tests proved that IBDV could maintain higher liters for a long time and the highest liters of IBDV in a spinner bottle and a fermentor were 8.875 and 8.58 ( - lgTCID50/0.1 ml) respectively when IBDV was proliferated on Vero cells using 2 g/L microcarriers in a spinner bottle and a fermentor and was cultivated under the optimum conditions obtained from flask tests after Vero cells had developed a confluent monolayer on microcarriers, which were at least one titer higher than the highest titer in the traditional rolling bottle. All these results suggested that this technology could be applied to large scale production for IBDV.展开更多
文摘It was in flask optimization tests proved that 2% serum, pH 7.0, 5:10 000 inoculation concentration of infectious bursal disease virus (IBDV) and 108 hours cultivation for IBDV harvest after its inoculation were the optimal conditions when IBDV was propagated on Vero cells. 250 ml self-made spinner bottle and 5 L stirring fermentor tests proved that IBDV could maintain higher liters for a long time and the highest liters of IBDV in a spinner bottle and a fermentor were 8.875 and 8.58 ( - lgTCID50/0.1 ml) respectively when IBDV was proliferated on Vero cells using 2 g/L microcarriers in a spinner bottle and a fermentor and was cultivated under the optimum conditions obtained from flask tests after Vero cells had developed a confluent monolayer on microcarriers, which were at least one titer higher than the highest titer in the traditional rolling bottle. All these results suggested that this technology could be applied to large scale production for IBDV.