期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Iron Deficiency-induced Increase of Root Branching Contributes to the Enhanced Root Ferric Chelate Reductase Activity 被引量:5
1
作者 Chong-Wei Jin Wei-Wei Chen +1 位作者 Zhi-Bin Meng Shao-Jian Zheng 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2008年第12期1557-1562,共6页
In various plant species, Fe deficiency increases lateral root branching. However, whether this morphological alteration contributes to the Fe deficiency-induced physiological responses still remains to be demonstrate... In various plant species, Fe deficiency increases lateral root branching. However, whether this morphological alteration contributes to the Fe deficiency-induced physiological responses still remains to be demonstrated. In the present research, we demonstrated that the lateral root development of red clover (Trifolium pretense L.) was significantly enhanced by Fe deficient treatment, and the total lateral root number correlated well with the Fe deficiency-induced ferric chelate reductase (FCR) activity. By analyzing the results from Dasgan et al. (2002), we also found that although the two tomato genotypes line227/1 (P1) and Roza (P2) and their reciprocal F1 hybrid lines ("P1 × P2" and "P2 ×PI") were cultured under two different lower Fe conditions (10^-6 and 10^-7 M FeEDDHA), their FCR activities are significantly correlated with the lateral root number. More interestingly, the -Fe chlorosis tolerant ability of these four tomato lines displays similar trends with the lateral root density. Taking these results together, it was proposed that the Fe deficiency-induced increases of the lateral root should play an important role in resistance to Fe deficiency, which may act as harnesses of a useful trait for the selection and breeding of more Fe-efficient crops among the genotypes that have evolved a Fe deficiency-induced Fe uptake system. 展开更多
关键词 Fe deficiency ferric chelate reductase lateral root red clover tomato.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部