Background: Aged skin exhibits visual alterations such as wrinkles, rough texture, pore dilation, and dull skin tone, as well as physiological aging, namely, decreased hydration and increased transepidermal water loss...Background: Aged skin exhibits visual alterations such as wrinkles, rough texture, pore dilation, and dull skin tone, as well as physiological aging, namely, decreased hydration and increased transepidermal water loss (TEWL). Recent advances in coherence tomography have also revealed that skin aging affects in vivo epidermal keratinocyte architecture. However, the interconnectivity between spatial architectural aging and visual/physiological aging parameters remains largely unknown. Purpose: To elucidate whether the tomographic keratinocyte architectural aging is correlated with visual and physiological skin aging parameters and to quantitatively evaluate the improvements of the architectural, visual, and physiological aging parameters by the daily treatment of the skin care formula containing Galactomyces Ferment Filtrate (GFF, 8X Pitera<sup>TM</sup>). Method: We measured the in vivo keratinocyte cellular architecture with two-photon stereoscopic tomography obtaining by-layer epidermal section images in 78 Asian females of various ages. Visual aging parameters were analyzed using a portable image capture system. Hydration and TEWL were also assessed. The anti-aging effects of GFF-containing skin moisturizer (SK-II LXP Cream<sup>TM</sup>) were also examined in two studies after twice-daily application for 2 (N = 35) and 4 (N = 32) weeks. Results: As for the keratinocyte cellular architecture, skin aging was significantly associated with decreased cell density and increased cell uniformity. These architectural aging parameters were significantly correlated with visual and physiological aging parameters, namely, rough texture, wrinkles, pore dilation, dull skin tone, dehydration, and increased TEWL. The strong interconnectivity allowed us to develop formulae to estimate the keratinocyte architecture from visual aging parameters. Moreover, twice-daily application of SK-II significantly improved the keratinocyte architecture associated with multiple skin aging visual and physiological parameters. Conclusion: Skin aging is a process involving mutual interconnections among epidermal keratinocyte cellular architecture, visual, and physiological parameters. The GFF-containing moisturizer SK-II effectively improves spatial architecture of keratinocytes in epidermis and these evaluated skin aging parameters in a new trajectory over the course of treatment. .展开更多
Ferrierite(FER) zeolites were synthesized by solid transformation at different alkalinities(OH-/Al2O3 molar ratios). The in situ delamination of FER zeolites were achieved and their catalytic performances in the catal...Ferrierite(FER) zeolites were synthesized by solid transformation at different alkalinities(OH-/Al2O3 molar ratios). The in situ delamination of FER zeolites were achieved and their catalytic performances in the catalytic cracking of C4 hydrocarbons were examined. The relationships among the OH-/Al2O3 molar ratio, FER structure,composition, surface acidity and catalytic performance in C4 hydrocarbon cracking were investigated. The results of X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, N2 adsorption, NH3temperature-programmed desorption and catalytic cracking showed that with increasing OH-/Al2O3 molar ratio in the synthesis gel, the Si O2/Al2O3 molar ratio of the as-synthesized FER zeolite decreased, the amount of acid sites in the corresponding H-FER increased, and the acid strength weakened. Additionally, the FER zeolite was delaminated at the mesoscale. H-FER5 synthesized at the highest alkalinity had the largest number of acid sites and exhibited the highest catalytic activity in C4 hydrocarbon catalytic cracking among three of the prepared catalysts. H-FER3 synthesized at the secondhighest alkalinity showed that the highest yield of benzene and toluene because of the secondary pores resulted from the gaps between the layers, which were beneficial to the diffusion and formation of large molecules.展开更多
The catalytic conversion of methanol to dimethyl ether(DME) over a series of home-made FER-type zeolites having different acidities and commercial γ-Al_2O_3 has been studied with the aim to understand the impact of a...The catalytic conversion of methanol to dimethyl ether(DME) over a series of home-made FER-type zeolites having different acidities and commercial γ-Al_2O_3 has been studied with the aim to understand the impact of adding water in the reactant stream on the catalytic behavior on investigated materials. Cofeeding water with methanol, the alcohol conversion was slightly reduced over the investigated zeolites while the catalytic activity of γ-Al_2O_3, the traditional catalyst of MeOH-to-DME conversion, was strongly inhibited. It was also found that, for the investigated zeolites, both the amount and the initial deposition rate of the coke formed during the reaction were reduced when water was co-fed with methanol while no significant effects on both methanol conversion and DME selectivity were observed under the investigated conditions.展开更多
Ferrierite zeolite membranes were prepared for the first time in the absence of organic structure-directing agents (SDA) on the surface of a porous a-alumina support. These membranes were characterized by means of X...Ferrierite zeolite membranes were prepared for the first time in the absence of organic structure-directing agents (SDA) on the surface of a porous a-alumina support. These membranes were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and pervaporation tests.展开更多
A series of Ferrierite(FER)zeolites were prepared via hydrothermal synthesis in the absence of organic templates with the aid of sodium-type FER zeolite(NaFER)or NaFER suspensions(NaFERsus)acquired by NaOH solution tr...A series of Ferrierite(FER)zeolites were prepared via hydrothermal synthesis in the absence of organic templates with the aid of sodium-type FER zeolite(NaFER)or NaFER suspensions(NaFERsus)acquired by NaOH solution treatment as seeds.The differences in the structures and acid sites of the obtained FER zeolite catalysts arising from the choice of seed were investigated,and the catalytic performances of the obtained FER zeolites were evaluated in the skeletal isomerization of n-butene.The results indicate that the samples synthesized using NaFERsus feature more Br?nsted acid sites(BAS)in the 10-membered-ring(10-MR)at the expense of strong acid and Lewis acid sites(LAS),compared with samples derived from NaFER.Therefore,the FER samples synthesized using NaFERsus outperformed the NaFER counterparts as the BAS in 10-MR and LAS were the main active sites,while BAS in 8-MR and LAS were responsible for side reactions,such as polymerization,cracking,and carbon deposition in n-butene isomerization.The optimized FER catalyst was continuously used for 720 h at 350℃ at 0.1 MPa under an n-butene space velocity of 2.0 h^(-1),during which the n-butene conversion remained at>40%,and the isobutylene yield was>37.5%.展开更多
This paper investigates the concept of Cross Polarization (CP) experiment in addition to revisiting the two potential expansion schemes recently developed in the field of solid-state nuclear magnetic resonance (SSNMR)...This paper investigates the concept of Cross Polarization (CP) experiment in addition to revisiting the two potential expansion schemes recently developed in the field of solid-state nuclear magnetic resonance (SSNMR): namely, the Floquet-Magnus expansion and the Fer expansion. We use the aforementioned expansion schemes for the calculation of effective Hamiltonians and propagators when the spin system undergoes Cross Polarization radiation. CP is the gateway experiment into SSNMR. An in-depth comprehension of the underlying mechanics of spin dynamics during the cross-polarization experiment is pivotal for further experimental developments and optimization of more complex solid-state NMR experiments. The main contribution of this work is a prospect related to spin physics;particularly regarding to generalization of the calculation. This work reports original yet interesting novel ideas and developments that include calculations performed on the CP experiment. In fact, the approach presented could play a major role in the interpretation of several fine NMR experiments in solids, which would in turn provide significant new insights in spin physics. The generality of the work points towards potential applications in problems related in solid-state NMR and theoretical developments of spectroscopy as well as interdisciplinary research areas as long as they include spin dynamics concepts.展开更多
文摘Background: Aged skin exhibits visual alterations such as wrinkles, rough texture, pore dilation, and dull skin tone, as well as physiological aging, namely, decreased hydration and increased transepidermal water loss (TEWL). Recent advances in coherence tomography have also revealed that skin aging affects in vivo epidermal keratinocyte architecture. However, the interconnectivity between spatial architectural aging and visual/physiological aging parameters remains largely unknown. Purpose: To elucidate whether the tomographic keratinocyte architectural aging is correlated with visual and physiological skin aging parameters and to quantitatively evaluate the improvements of the architectural, visual, and physiological aging parameters by the daily treatment of the skin care formula containing Galactomyces Ferment Filtrate (GFF, 8X Pitera<sup>TM</sup>). Method: We measured the in vivo keratinocyte cellular architecture with two-photon stereoscopic tomography obtaining by-layer epidermal section images in 78 Asian females of various ages. Visual aging parameters were analyzed using a portable image capture system. Hydration and TEWL were also assessed. The anti-aging effects of GFF-containing skin moisturizer (SK-II LXP Cream<sup>TM</sup>) were also examined in two studies after twice-daily application for 2 (N = 35) and 4 (N = 32) weeks. Results: As for the keratinocyte cellular architecture, skin aging was significantly associated with decreased cell density and increased cell uniformity. These architectural aging parameters were significantly correlated with visual and physiological aging parameters, namely, rough texture, wrinkles, pore dilation, dull skin tone, dehydration, and increased TEWL. The strong interconnectivity allowed us to develop formulae to estimate the keratinocyte architecture from visual aging parameters. Moreover, twice-daily application of SK-II significantly improved the keratinocyte architecture associated with multiple skin aging visual and physiological parameters. Conclusion: Skin aging is a process involving mutual interconnections among epidermal keratinocyte cellular architecture, visual, and physiological parameters. The GFF-containing moisturizer SK-II effectively improves spatial architecture of keratinocytes in epidermis and these evaluated skin aging parameters in a new trajectory over the course of treatment. .
基金Supported by the NSFC of China(20973123)the National Basic Research Program of China(2012CB215002)+1 种基金the International Science and Technology Cooperative Program of China(2010DFB40440)Shanxi Basic Research Projects(2012011005-7,2012011008-3)
文摘Ferrierite(FER) zeolites were synthesized by solid transformation at different alkalinities(OH-/Al2O3 molar ratios). The in situ delamination of FER zeolites were achieved and their catalytic performances in the catalytic cracking of C4 hydrocarbons were examined. The relationships among the OH-/Al2O3 molar ratio, FER structure,composition, surface acidity and catalytic performance in C4 hydrocarbon cracking were investigated. The results of X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, N2 adsorption, NH3temperature-programmed desorption and catalytic cracking showed that with increasing OH-/Al2O3 molar ratio in the synthesis gel, the Si O2/Al2O3 molar ratio of the as-synthesized FER zeolite decreased, the amount of acid sites in the corresponding H-FER increased, and the acid strength weakened. Additionally, the FER zeolite was delaminated at the mesoscale. H-FER5 synthesized at the highest alkalinity had the largest number of acid sites and exhibited the highest catalytic activity in C4 hydrocarbon catalytic cracking among three of the prepared catalysts. H-FER3 synthesized at the secondhighest alkalinity showed that the highest yield of benzene and toluene because of the secondary pores resulted from the gaps between the layers, which were beneficial to the diffusion and formation of large molecules.
文摘The catalytic conversion of methanol to dimethyl ether(DME) over a series of home-made FER-type zeolites having different acidities and commercial γ-Al_2O_3 has been studied with the aim to understand the impact of adding water in the reactant stream on the catalytic behavior on investigated materials. Cofeeding water with methanol, the alcohol conversion was slightly reduced over the investigated zeolites while the catalytic activity of γ-Al_2O_3, the traditional catalyst of MeOH-to-DME conversion, was strongly inhibited. It was also found that, for the investigated zeolites, both the amount and the initial deposition rate of the coke formed during the reaction were reduced when water was co-fed with methanol while no significant effects on both methanol conversion and DME selectivity were observed under the investigated conditions.
文摘Ferrierite zeolite membranes were prepared for the first time in the absence of organic structure-directing agents (SDA) on the surface of a porous a-alumina support. These membranes were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and pervaporation tests.
基金the funding of the project by the CNPC Corporation (2018B-1907)。
文摘A series of Ferrierite(FER)zeolites were prepared via hydrothermal synthesis in the absence of organic templates with the aid of sodium-type FER zeolite(NaFER)or NaFER suspensions(NaFERsus)acquired by NaOH solution treatment as seeds.The differences in the structures and acid sites of the obtained FER zeolite catalysts arising from the choice of seed were investigated,and the catalytic performances of the obtained FER zeolites were evaluated in the skeletal isomerization of n-butene.The results indicate that the samples synthesized using NaFERsus feature more Br?nsted acid sites(BAS)in the 10-membered-ring(10-MR)at the expense of strong acid and Lewis acid sites(LAS),compared with samples derived from NaFER.Therefore,the FER samples synthesized using NaFERsus outperformed the NaFER counterparts as the BAS in 10-MR and LAS were the main active sites,while BAS in 8-MR and LAS were responsible for side reactions,such as polymerization,cracking,and carbon deposition in n-butene isomerization.The optimized FER catalyst was continuously used for 720 h at 350℃ at 0.1 MPa under an n-butene space velocity of 2.0 h^(-1),during which the n-butene conversion remained at>40%,and the isobutylene yield was>37.5%.
文摘This paper investigates the concept of Cross Polarization (CP) experiment in addition to revisiting the two potential expansion schemes recently developed in the field of solid-state nuclear magnetic resonance (SSNMR): namely, the Floquet-Magnus expansion and the Fer expansion. We use the aforementioned expansion schemes for the calculation of effective Hamiltonians and propagators when the spin system undergoes Cross Polarization radiation. CP is the gateway experiment into SSNMR. An in-depth comprehension of the underlying mechanics of spin dynamics during the cross-polarization experiment is pivotal for further experimental developments and optimization of more complex solid-state NMR experiments. The main contribution of this work is a prospect related to spin physics;particularly regarding to generalization of the calculation. This work reports original yet interesting novel ideas and developments that include calculations performed on the CP experiment. In fact, the approach presented could play a major role in the interpretation of several fine NMR experiments in solids, which would in turn provide significant new insights in spin physics. The generality of the work points towards potential applications in problems related in solid-state NMR and theoretical developments of spectroscopy as well as interdisciplinary research areas as long as they include spin dynamics concepts.