The phase composition, microstructure, thermal expansion coefficients, oxygen permeation properties and chemical stability of SrCo0.8Fe0.2O3-δ (SCFM) were investigated and compared with those of SrCo0.8Fe0.2O3-δ(...The phase composition, microstructure, thermal expansion coefficients, oxygen permeation properties and chemical stability of SrCo0.8Fe0.2O3-δ (SCFM) were investigated and compared with those of SrCo0.8Fe0.2O3-δ(SCF). Single phase SCFM was successfully prepared by a combined EDTA-citric method. SCFM shows a lower thermal expansion coefficient (24× 10^-6-29× 10^-6/K) than SCF between 500 and 1050 ℃, indicating a more stable structure. SCFM shows a high oxygen permeation flux, although the oxygen flux of SCFM decreases slightly because of Mo dopant. Furthermore, it was demonstrated that the doping of Mo in SCF can prevent the order-disorder transition and improves the chemical stability to CO2.展开更多
Comparatively high CH3OH selectivity (60.0%) and yield (6.7%) were obtained on MoOx/(LaCoO3+Co3O4) catalysts in selective oxidation of methane to methanol using molecular oxygen as oxidant. The interaction between MoO...Comparatively high CH3OH selectivity (60.0%) and yield (6.7%) were obtained on MoOx/(LaCoO3+Co3O4) catalysts in selective oxidation of methane to methanol using molecular oxygen as oxidant. The interaction between MoOx and La-Co-oxide modified the molecular structure of molybdenum oxide and the ratio of O7O ' on the catalyst surface, which controlled the catalytic performance of MoOx/(LaCoO3+Co3O4) catalysts.展开更多
文摘The phase composition, microstructure, thermal expansion coefficients, oxygen permeation properties and chemical stability of SrCo0.8Fe0.2O3-δ (SCFM) were investigated and compared with those of SrCo0.8Fe0.2O3-δ(SCF). Single phase SCFM was successfully prepared by a combined EDTA-citric method. SCFM shows a lower thermal expansion coefficient (24× 10^-6-29× 10^-6/K) than SCF between 500 and 1050 ℃, indicating a more stable structure. SCFM shows a high oxygen permeation flux, although the oxygen flux of SCFM decreases slightly because of Mo dopant. Furthermore, it was demonstrated that the doping of Mo in SCF can prevent the order-disorder transition and improves the chemical stability to CO2.
基金supported by the State Key Fundamental Research Development Project(G1999022404)
文摘Comparatively high CH3OH selectivity (60.0%) and yield (6.7%) were obtained on MoOx/(LaCoO3+Co3O4) catalysts in selective oxidation of methane to methanol using molecular oxygen as oxidant. The interaction between MoOx and La-Co-oxide modified the molecular structure of molybdenum oxide and the ratio of O7O ' on the catalyst surface, which controlled the catalytic performance of MoOx/(LaCoO3+Co3O4) catalysts.