The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i...The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.展开更多
On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient ...On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices.展开更多
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
Aqueous zinc metal batteries are regarded as the most promising energy storage system due to their advantages of high safety,low cost,and high theoretical capacity.However,the growth of dendrites and the occurrence of...Aqueous zinc metal batteries are regarded as the most promising energy storage system due to their advantages of high safety,low cost,and high theoretical capacity.However,the growth of dendrites and the occurrence of side reactions hinder the development of zinc metal batteries.Despite previous attempts to design advanced hydrogel electrolytes,achieving high mechanical performance and ionic conductivity of hydrogel electrolytes has remained challenging.In this work,a hydrogel electrolyte with an ionic crosslinked network is prepared by carboxylic bacterial cellulose fiber and imidazole-type ionic liquid,following by a covalent network of polyacrylamide.The hydrogel electrolyte possesses a superior ionic conductivity of 43.76 mS cm^(−1),leading to a Zn^(2+)migration number of 0.45,and high mechanical performance with an elastic modulus of 3.48 GPa and an elongation at breaking of 38.36%.More importantly,under the anion-coordination effect of the carboxyl group in bacterial cellulose and[BF4]−in imidazole-type ionic liquid,the solvation sheath of hydrated Zn^(2+)ions and the nucleation overpotential of Zn plating are regulated.The results of cycled testing show that the growth of zinc dendrites is effectively inhibited and the generation of irreversible by-products is reduced.With the carboxylic bacterial cellulose-based hydrogel electrolyte,the Zn||Zn symmetric batteries offer good cyclability as well as Zn||Ti batteries.展开更多
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed...The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.展开更多
Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]...Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.展开更多
Molecular structures of polycarboxylate(PCE) superplasticizer significantly affect the rheological properties of cement paste. Consequently, we employed self-synthesized PCE copolymers with different carboxylic dens...Molecular structures of polycarboxylate(PCE) superplasticizer significantly affect the rheological properties of cement paste. Consequently, we employed self-synthesized PCE copolymers with different carboxylic densities to investigate their influence on the rheological behavior of cement paste. Three typical rheological models were applied to analyze the rheological properties, including Power-law model, Bingham model as well as Herschel-Buikley model. In addition, the thixotropical performances of cement paste in the presence of PCE with different carboxylic densities were investigated. The results show that the carboxylic density of PCE greatly influences the dispersing performance of PCE superplasticizers. As carboxylic density increases, the dispersing capability of PCE improves, and P(PEG1-AA6) possesses the strongest dispersing capability, the initial fluidity and 1 h fluidity of cement paste are both the highest, and cement paste has the lowest viscosity and the smallest hysteresis loop.展开更多
A simple, precise and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of oseltamivir and oseltamivir carboxylate, a neuramin...A simple, precise and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of oseltamivir and oseltamivir carboxylate, a neuraminidase inhibitor, using their deuterated analogs as internal standards (ISs). The method involved solid phase extraction of the analytes and ISs from 200 μL human plasma with no reconstitution and drying steps. The chromatographic separation was achieved on a Symmetry C18 (100 mm × 4.6 mm, 5 μm) column using 10 mM ammonium formate and acetonitrile (30:70, v/v) as the mobile phase in a run time of 2.0 min. Quantitation of analytes and ISs were done by multiple reaction monitoring on a triple quadrupole mass spectrometer in the positive ionization mode. The linearity of the method was established in the concentration range of 0.5-200 ng/mL and 2.0-800 ng/mL for oseltamivir and oseltamivir carboxylate respectively. The mean extraction recovery for oseltamivir (94.4%) and oseltamivir carboxylate (92.7%) from spiked plasma samples was consistent and reproducible. The application of this method was demonstratedby a bioequivalence study in 42 healthy Indian subjects with 75 mg oseltamivir phosphate capsules. The assay reproducibility was established by reanalysis of 151 incurred subject samples.展开更多
Free radical co-polymerization was employed to synthesize co-poly carboxylate (PC) su-perplasticizers with different amount of carboxyl and methyl polyethylene glycol (MPEG) side chain. Dispersion ability and retentio...Free radical co-polymerization was employed to synthesize co-poly carboxylate (PC) su-perplasticizers with different amount of carboxyl and methyl polyethylene glycol (MPEG) side chain. Dispersion ability and retention of PC were compared with one another. The results show that increase of side chain is advantageous to dispersion, but it decreases when amount of MPEG is beyond a certain value which is different with the proportion of carboxyl. If the amount of carboxyl increases, the influence of side chain in copolymer on dispersion diminishes. Polyether side chain is advantageous to retention. And the author explained the mechanism of PC using the theory of steric repulsive force.展开更多
Nano-sized caiboxylales Na2C7H3NO4 and Na2C6H2N2O4 were prepared and investigated as anode materials for lithium-ion batteries.Both carboxylates exhibit high reversible capacities around 190 mAh/g above a cut-off volt...Nano-sized caiboxylales Na2C7H3NO4 and Na2C6H2N2O4 were prepared and investigated as anode materials for lithium-ion batteries.Both carboxylates exhibit high reversible capacities around 190 mAh/g above a cut-off voltage of 0.8 V vs.Li+/Li.potentially improving the safety of the batteries.In addition,good rate performance and long cycle life of these carboxylates make them promising candidates as anode materials for lithium-ion batteries.展开更多
In the present study, new series of pyridinium carboxylate protic ionic liquids(PILs) were synthesized by pairing pyridinium cation with carboxylate anion from C_1–C_3 forming pyridinium formate([C_5H_6N^+][HCOO^-]),...In the present study, new series of pyridinium carboxylate protic ionic liquids(PILs) were synthesized by pairing pyridinium cation with carboxylate anion from C_1–C_3 forming pyridinium formate([C_5H_6N^+][HCOO^-]),pyridinium acetate([C_5H_6N^+][CH_3COO^-]) and pyridinium propionate([C_5H_6N^+][CH_3CH_2COO^-]) respectively.The physical properties namely, density, viscosity, surface tension(298.15–343.15) K, and refractive index(293.15–323.15) K were measured. Thermal properties namely, glass transition temperature, molar heat capacity, and thermal decomposition temperatures were also determined. The thermal expansivity was calculated using the experimental density data. The effect of increasing the alkyl chain length on the thermophysical properties of the pyridinium carboxylate PILs has been evaluated. As expected the physical properties i.e. density,viscosity, surface tension and refractive index of the investigated pyridinium carboxylates decreased with increasing temperature. In general pyridinium carboxylate PILs possessed low viscosity, high thermal stability and excellent hydrogen bonding capability, and these properties lead them to outperform conventional solvents employed for lignin dissolution.展开更多
A novel sodium holmium carboxylate compound,namely Na 4 Ho 4 (μ 3-OH) 4 (1,4BDC) 6 ·6.25H 2 O (1,1,4-BDC=1,4-benzenedicarboxylate),has been solvothermally synthesized and structurally characterized.The str...A novel sodium holmium carboxylate compound,namely Na 4 Ho 4 (μ 3-OH) 4 (1,4BDC) 6 ·6.25H 2 O (1,1,4-BDC=1,4-benzenedicarboxylate),has been solvothermally synthesized and structurally characterized.The structure features a two-fold interpenetrated three-dimensional open-framework constructed by the [Ho 4 (μ 3-OH) 4 ] 8+ clusters bridged by 1,4-BDC ligands.The Na + ions and lattice water molecules are located in the channels.The structure is further stabilized by hydrogen-bonding and π-π stacking interactions.The thermal stability of the compound has been investigated via thermogravimetric analysis.展开更多
One new mixed-ligand coordination polymer,namely[Co2(btc)(bpdc)(0.5)(py)3]n(1),was hydrothermally synthesized using biphenyl-2,4,4'-tricarboxylic acid(H3btc) as a main building block,along with two auxili...One new mixed-ligand coordination polymer,namely[Co2(btc)(bpdc)(0.5)(py)3]n(1),was hydrothermally synthesized using biphenyl-2,4,4'-tricarboxylic acid(H3btc) as a main building block,along with two auxiliary ligands(H2bpdc = 2,2'-bipyridine-5,5'-dicarboxylic acid and py =pyridine).The product 1 was characterized by IR spectroscopy,elemental,thermogravimetric,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction studies show that compound 1 possesses an intricate 3D metal-organic framework based on tetracobalt(Ⅱ) units.Magnetic susceptibility measurement indicates that compound 1 shows an antiferromagnetic coupling between the Co(Ⅱ) ions.展开更多
Methods of optical spectroscopy and X-ray crystallography data were used to examine the effect of architecture of carboxylate anions on structure of the Eu3+ coordination centre in europium earboxylates with 1,10-phe...Methods of optical spectroscopy and X-ray crystallography data were used to examine the effect of architecture of carboxylate anions on structure of the Eu3+ coordination centre in europium earboxylates with 1,10-phenanthroline Eu(RCOO)3·Phen. Luminescence spectra of europium acetate, nitropropionate, benzoate, naphthylcarboxylates, phenylacetates, phenoxyacetate, triphenylpropionate were investigated. A few of europium carboxylates with 2,2'-bipyridine Eu(RCOO)3·Bpy and europium salts Eu(RCOO)3·nH2O were also studied. Vibrational IR and Raman spectra of phenylacetate family were analyzed. The crystal structure of nitropropionate Eu(NO2C2H4COO)3·Phen was solved by X-my diffraction method. The predominant influence of steric hindrances on Eu^3+ coordination centre was observed at increase of the size of aromatic flagment of carboxylate anions. It was demonstrated, that introduction of the methylene bridges between the carboxylic group and aromatic rings of ligand weakens the effect of steric factor.展开更多
In this study, cellulose nanocrystals(CNC) with surface carboxylic groups were prepared from bleached softwood pulp by hydrolysis with concentrated citric acid at concentrations of 60 wt%~80 wt%. The solid residues fr...In this study, cellulose nanocrystals(CNC) with surface carboxylic groups were prepared from bleached softwood pulp by hydrolysis with concentrated citric acid at concentrations of 60 wt%~80 wt%. The solid residues from acid hydrolysis were collected for producing cellulose nanofibrils(CNF) via post high-pressure homogenization. Citric acid could be easily recovered after hydrolysis reactions through crystallization due to its low water solubility or through precipitation as a calcium salt followed by acidification. Several important properties of CNC and CNF, such as dimension, crystallinity, surface chemistry, thermal stability, were evaluated. Results showed that the obtained CNC and CNF surfaces contained carboxylic acid groups that facilitated functionalization and dispersion in aqueous processing. The recyclability of citric acid and the carboxylated CNC/CNF give the renewable cellulose nanomaterial huge potential for a wide range of industrial applications. Furthermore, the resultant CNC and CNF were used as reinforcing agents to make sodium carboxymethyl cellulose(CMC) films. Both CNC and CNF showed reinforcing effects in CMC composite films. The tensile strength of CMC films increased by 54.3% and 85.7% with 10 wt% inclusion of CNC and CNF, respectively. This study provides detailed information on carboxylated nanocellulose prepared by critic acid hydrolysis; a sustainable approach for the preparation of CNC/CNF is of significant importance for their various uses.展开更多
Eight tri(2-methyl-2-phznylpropyl) germylpropionates have been synthesized. and their structures were characterized by elemental analysis, IR, multinuclear NMR(H-1,C-13.Sn-119) and MS. The spectroscopic studies reveal...Eight tri(2-methyl-2-phznylpropyl) germylpropionates have been synthesized. and their structures were characterized by elemental analysis, IR, multinuclear NMR(H-1,C-13.Sn-119) and MS. The spectroscopic studies revealed that compounds of this type possess a tetrahedral geometry, which have been expected to have good biological activity.展开更多
Orthogonal-test-design method has been used to determine the optimal formula by phase behavior and interfacial tension studies, respectively. The effect of each component of two alkaline/surfactant/polymer flooding sy...Orthogonal-test-design method has been used to determine the optimal formula by phase behavior and interfacial tension studies, respectively. The effect of each component of two alkaline/surfactant/polymer flooding systems on interfacial tension is discussed, in which a low-price natural mixed carboxylate (SDC) is used as the major surfactant. The results indicate that the optimal composition is SDC (0.5%), alkaline NaHCO3/Na2CO3 with mass ratio of 1 (1.0%), and hydrolyzed polyacrylamide(0.1%). In the coreflood experiment, their oil recovery is increased by about 25.2% and 26.8% original oil in place, respectively.展开更多
Petroleum carboxylate that may be suitable for tertiary oil recovery have been produced inexpensively from the fractions of Daqing crude oil by a two step process.The feed stock was first oxidized in the vapor phase,f...Petroleum carboxylate that may be suitable for tertiary oil recovery have been produced inexpensively from the fractions of Daqing crude oil by a two step process.The feed stock was first oxidized in the vapor phase,followed by reaction of the oxidized products with sodium hydroxide.Dilute solutions of sodium carboxylates were produced and show ultralow(10^(-2)mN/m)interfacial tensions(IFTs)against a variety of hydrocarbons with a wide range of ACN(Alkane Carbon Number).Infrared spectroscopy was used to identify the functional groups in the oxidized and the saponified products.展开更多
Syngas to aromatics(STA)over bifunctional catalysts has attracted much attention in recent years,but the mechanism underlying the formation of aromatics remains controversial.The critical reaction intermediates,carbox...Syngas to aromatics(STA)over bifunctional catalysts has attracted much attention in recent years,but the mechanism underlying the formation of aromatics remains controversial.The critical reaction intermediates,carboxylates,were first identified and then confirmed to essentially promote aromatization in the syngas conversion over a ZnCrAlO_(x)&H-ZSM-5 composite catalyst.This study provides evidence that the carboxylates can be formed during the reactions of formate species and olefins.In addition,it is shown that the carboxylates favor the formation of aromatics over H-ZSM-5 even in the presence of H2.A novel mechanism for the formation of aromatics via the generation and transformation of carboxylate intermediates is proposed,and the transformation of carboxylates to aromatics via methyl-2-cyclopenten-1-one(MCPO)intermediates is indeed likely.A better understanding of the formation mechanism of aromatics would help optimize the composite catalyst.展开更多
基金the support of the National Natural Science Foundation of China grant number 51776175。
文摘The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.
基金Funded by the National Natural Science Foundation of China(No.51873167)the Fundamental Research Funds for the Central Universities(WUT:2022-CL-A1-04)。
文摘On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices.
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.
基金National Natural Science Foundation of China(51903113,51763014,and 52073133)China Postdoctoral Science Foundation(2022T150282,2019M663858)Program for Hongliu Excellent and Distinguished Young Scholars at Lanzhou University of Technology.
文摘Aqueous zinc metal batteries are regarded as the most promising energy storage system due to their advantages of high safety,low cost,and high theoretical capacity.However,the growth of dendrites and the occurrence of side reactions hinder the development of zinc metal batteries.Despite previous attempts to design advanced hydrogel electrolytes,achieving high mechanical performance and ionic conductivity of hydrogel electrolytes has remained challenging.In this work,a hydrogel electrolyte with an ionic crosslinked network is prepared by carboxylic bacterial cellulose fiber and imidazole-type ionic liquid,following by a covalent network of polyacrylamide.The hydrogel electrolyte possesses a superior ionic conductivity of 43.76 mS cm^(−1),leading to a Zn^(2+)migration number of 0.45,and high mechanical performance with an elastic modulus of 3.48 GPa and an elongation at breaking of 38.36%.More importantly,under the anion-coordination effect of the carboxyl group in bacterial cellulose and[BF4]−in imidazole-type ionic liquid,the solvation sheath of hydrated Zn^(2+)ions and the nucleation overpotential of Zn plating are regulated.The results of cycled testing show that the growth of zinc dendrites is effectively inhibited and the generation of irreversible by-products is reduced.With the carboxylic bacterial cellulose-based hydrogel electrolyte,the Zn||Zn symmetric batteries offer good cyclability as well as Zn||Ti batteries.
基金supported by the National Natural Science Foundation of China,Nos.91849115 and U1904207(to YX),81974211 and 82171247(to CS)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,No.2020-PT310-01(to YX).
文摘The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.
基金support of this work by National Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.
基金the State Key Laboratory of Silicate Materials for Architectures(SYSJJ2018-09)the Shaanxi Provincial High Performance Concrete Engineering Laboratory(SHPC201701)
文摘Molecular structures of polycarboxylate(PCE) superplasticizer significantly affect the rheological properties of cement paste. Consequently, we employed self-synthesized PCE copolymers with different carboxylic densities to investigate their influence on the rheological behavior of cement paste. Three typical rheological models were applied to analyze the rheological properties, including Power-law model, Bingham model as well as Herschel-Buikley model. In addition, the thixotropical performances of cement paste in the presence of PCE with different carboxylic densities were investigated. The results show that the carboxylic density of PCE greatly influences the dispersing performance of PCE superplasticizers. As carboxylic density increases, the dispersing capability of PCE improves, and P(PEG1-AA6) possesses the strongest dispersing capability, the initial fluidity and 1 h fluidity of cement paste are both the highest, and cement paste has the lowest viscosity and the smallest hysteresis loop.
文摘A simple, precise and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of oseltamivir and oseltamivir carboxylate, a neuraminidase inhibitor, using their deuterated analogs as internal standards (ISs). The method involved solid phase extraction of the analytes and ISs from 200 μL human plasma with no reconstitution and drying steps. The chromatographic separation was achieved on a Symmetry C18 (100 mm × 4.6 mm, 5 μm) column using 10 mM ammonium formate and acetonitrile (30:70, v/v) as the mobile phase in a run time of 2.0 min. Quantitation of analytes and ISs were done by multiple reaction monitoring on a triple quadrupole mass spectrometer in the positive ionization mode. The linearity of the method was established in the concentration range of 0.5-200 ng/mL and 2.0-800 ng/mL for oseltamivir and oseltamivir carboxylate respectively. The mean extraction recovery for oseltamivir (94.4%) and oseltamivir carboxylate (92.7%) from spiked plasma samples was consistent and reproducible. The application of this method was demonstratedby a bioequivalence study in 42 healthy Indian subjects with 75 mg oseltamivir phosphate capsules. The assay reproducibility was established by reanalysis of 151 incurred subject samples.
文摘Free radical co-polymerization was employed to synthesize co-poly carboxylate (PC) su-perplasticizers with different amount of carboxyl and methyl polyethylene glycol (MPEG) side chain. Dispersion ability and retention of PC were compared with one another. The results show that increase of side chain is advantageous to dispersion, but it decreases when amount of MPEG is beyond a certain value which is different with the proportion of carboxyl. If the amount of carboxyl increases, the influence of side chain in copolymer on dispersion diminishes. Polyether side chain is advantageous to retention. And the author explained the mechanism of PC using the theory of steric repulsive force.
基金supported by the funding from"863"Project(2011AA11A235)"973"Projects(2010CB833102 and 2012CB932900)+1 种基金NSFC(No.51222210 and 11234013)the 100 Talent Project of the Chinese Academy of Sciences
文摘Nano-sized caiboxylales Na2C7H3NO4 and Na2C6H2N2O4 were prepared and investigated as anode materials for lithium-ion batteries.Both carboxylates exhibit high reversible capacities around 190 mAh/g above a cut-off voltage of 0.8 V vs.Li+/Li.potentially improving the safety of the batteries.In addition,good rate performance and long cycle life of these carboxylates make them promising candidates as anode materials for lithium-ion batteries.
文摘In the present study, new series of pyridinium carboxylate protic ionic liquids(PILs) were synthesized by pairing pyridinium cation with carboxylate anion from C_1–C_3 forming pyridinium formate([C_5H_6N^+][HCOO^-]),pyridinium acetate([C_5H_6N^+][CH_3COO^-]) and pyridinium propionate([C_5H_6N^+][CH_3CH_2COO^-]) respectively.The physical properties namely, density, viscosity, surface tension(298.15–343.15) K, and refractive index(293.15–323.15) K were measured. Thermal properties namely, glass transition temperature, molar heat capacity, and thermal decomposition temperatures were also determined. The thermal expansivity was calculated using the experimental density data. The effect of increasing the alkyl chain length on the thermophysical properties of the pyridinium carboxylate PILs has been evaluated. As expected the physical properties i.e. density,viscosity, surface tension and refractive index of the investigated pyridinium carboxylates decreased with increasing temperature. In general pyridinium carboxylate PILs possessed low viscosity, high thermal stability and excellent hydrogen bonding capability, and these properties lead them to outperform conventional solvents employed for lignin dissolution.
基金supported by the NNSFC (Nos. 20771102 and 20873149)NSF of Fujian Province(No. 2008J0174 )973 Program (No. 2006CB932904)
文摘A novel sodium holmium carboxylate compound,namely Na 4 Ho 4 (μ 3-OH) 4 (1,4BDC) 6 ·6.25H 2 O (1,1,4-BDC=1,4-benzenedicarboxylate),has been solvothermally synthesized and structurally characterized.The structure features a two-fold interpenetrated three-dimensional open-framework constructed by the [Ho 4 (μ 3-OH) 4 ] 8+ clusters bridged by 1,4-BDC ligands.The Na + ions and lattice water molecules are located in the channels.The structure is further stabilized by hydrogen-bonding and π-π stacking interactions.The thermal stability of the compound has been investigated via thermogravimetric analysis.
基金supported by the Natural Science Foundation of Shanxi Province(No.2013011011-6)the Subject Team of Taiyuan University of Science and Technology
文摘One new mixed-ligand coordination polymer,namely[Co2(btc)(bpdc)(0.5)(py)3]n(1),was hydrothermally synthesized using biphenyl-2,4,4'-tricarboxylic acid(H3btc) as a main building block,along with two auxiliary ligands(H2bpdc = 2,2'-bipyridine-5,5'-dicarboxylic acid and py =pyridine).The product 1 was characterized by IR spectroscopy,elemental,thermogravimetric,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction studies show that compound 1 possesses an intricate 3D metal-organic framework based on tetracobalt(Ⅱ) units.Magnetic susceptibility measurement indicates that compound 1 shows an antiferromagnetic coupling between the Co(Ⅱ) ions.
基金supported by the Russian Foundation for Basic Research (N 08-02-00424-a, N 06-03-32557-a)
文摘Methods of optical spectroscopy and X-ray crystallography data were used to examine the effect of architecture of carboxylate anions on structure of the Eu3+ coordination centre in europium earboxylates with 1,10-phenanthroline Eu(RCOO)3·Phen. Luminescence spectra of europium acetate, nitropropionate, benzoate, naphthylcarboxylates, phenylacetates, phenoxyacetate, triphenylpropionate were investigated. A few of europium carboxylates with 2,2'-bipyridine Eu(RCOO)3·Bpy and europium salts Eu(RCOO)3·nH2O were also studied. Vibrational IR and Raman spectra of phenylacetate family were analyzed. The crystal structure of nitropropionate Eu(NO2C2H4COO)3·Phen was solved by X-my diffraction method. The predominant influence of steric hindrances on Eu^3+ coordination centre was observed at increase of the size of aromatic flagment of carboxylate anions. It was demonstrated, that introduction of the methylene bridges between the carboxylic group and aromatic rings of ligand weakens the effect of steric factor.
基金financial support for this work is from the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period(No.2015BAD14B06)the National Natural Science Foundation of China(No.31470609,No.25106240 and No.21433001)+1 种基金the Primary Research and Development Plan of Shandong Province(No.2016GGX104003 and No.2016CYJS07A02)the Young Taishan Scholars Program of Shandong Province(No.tsqn20161052)
文摘In this study, cellulose nanocrystals(CNC) with surface carboxylic groups were prepared from bleached softwood pulp by hydrolysis with concentrated citric acid at concentrations of 60 wt%~80 wt%. The solid residues from acid hydrolysis were collected for producing cellulose nanofibrils(CNF) via post high-pressure homogenization. Citric acid could be easily recovered after hydrolysis reactions through crystallization due to its low water solubility or through precipitation as a calcium salt followed by acidification. Several important properties of CNC and CNF, such as dimension, crystallinity, surface chemistry, thermal stability, were evaluated. Results showed that the obtained CNC and CNF surfaces contained carboxylic acid groups that facilitated functionalization and dispersion in aqueous processing. The recyclability of citric acid and the carboxylated CNC/CNF give the renewable cellulose nanomaterial huge potential for a wide range of industrial applications. Furthermore, the resultant CNC and CNF were used as reinforcing agents to make sodium carboxymethyl cellulose(CMC) films. Both CNC and CNF showed reinforcing effects in CMC composite films. The tensile strength of CMC films increased by 54.3% and 85.7% with 10 wt% inclusion of CNC and CNF, respectively. This study provides detailed information on carboxylated nanocellulose prepared by critic acid hydrolysis; a sustainable approach for the preparation of CNC/CNF is of significant importance for their various uses.
文摘Eight tri(2-methyl-2-phznylpropyl) germylpropionates have been synthesized. and their structures were characterized by elemental analysis, IR, multinuclear NMR(H-1,C-13.Sn-119) and MS. The spectroscopic studies revealed that compounds of this type possess a tetrahedral geometry, which have been expected to have good biological activity.
文摘Orthogonal-test-design method has been used to determine the optimal formula by phase behavior and interfacial tension studies, respectively. The effect of each component of two alkaline/surfactant/polymer flooding systems on interfacial tension is discussed, in which a low-price natural mixed carboxylate (SDC) is used as the major surfactant. The results indicate that the optimal composition is SDC (0.5%), alkaline NaHCO3/Na2CO3 with mass ratio of 1 (1.0%), and hydrolyzed polyacrylamide(0.1%). In the coreflood experiment, their oil recovery is increased by about 25.2% and 26.8% original oil in place, respectively.
文摘Petroleum carboxylate that may be suitable for tertiary oil recovery have been produced inexpensively from the fractions of Daqing crude oil by a two step process.The feed stock was first oxidized in the vapor phase,followed by reaction of the oxidized products with sodium hydroxide.Dilute solutions of sodium carboxylates were produced and show ultralow(10^(-2)mN/m)interfacial tensions(IFTs)against a variety of hydrocarbons with a wide range of ACN(Alkane Carbon Number).Infrared spectroscopy was used to identify the functional groups in the oxidized and the saponified products.
文摘Syngas to aromatics(STA)over bifunctional catalysts has attracted much attention in recent years,but the mechanism underlying the formation of aromatics remains controversial.The critical reaction intermediates,carboxylates,were first identified and then confirmed to essentially promote aromatization in the syngas conversion over a ZnCrAlO_(x)&H-ZSM-5 composite catalyst.This study provides evidence that the carboxylates can be formed during the reactions of formate species and olefins.In addition,it is shown that the carboxylates favor the formation of aromatics over H-ZSM-5 even in the presence of H2.A novel mechanism for the formation of aromatics via the generation and transformation of carboxylate intermediates is proposed,and the transformation of carboxylates to aromatics via methyl-2-cyclopenten-1-one(MCPO)intermediates is indeed likely.A better understanding of the formation mechanism of aromatics would help optimize the composite catalyst.