期刊文献+
共找到793篇文章
< 1 2 40 >
每页显示 20 50 100
BaTiO_(3)/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization
1
作者 韩无双 刘可为 +6 位作者 杨佳霖 朱勇学 程祯 陈星 李炳辉 刘雷 申德振 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期202-207,共6页
Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector ... Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents. 展开更多
关键词 ferroelectric effect BIPOLAR self-driven PHOTODETECTOR
下载PDF
Enhancing BiVO_(4)photoanode performance by insertion of an epitaxial BiFeO_(3)ferroelectric layer
2
作者 Haejin Jang Yejoon Kim +6 位作者 Hojoong Choi Jiwoong Yang Yoonsung Jung Sungkyun Choi Donghyeon Lee Ho Won Jang Sanghan Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期71-78,I0003,共9页
BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfacto... BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance.To address this,various modifications have been attempted,including the use of ferroelectric materials.Ferroelectric materials can form a permanent polarization within the layer,enhancing the separation and transport of photo-excited electron-hole pairs.In this study,we propose a novel approach by depositing an epitaxial BiFeO_(3)(BFO)thin film underneath the BVO thin film(BVO/BFO)to harness the ferroelectric property of BFO.The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination.As a result,the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density(0.65 mA cm^(-2))at 1.23 V_(RHE)under the illumination compared to the bare BVO photoanodes(0.18 m A cm^(-2)),which is consistent with the increase of the applied bias photon-to-current conversion efficiencies(ABPE)and the result of electrochemical impedance spectroscopy(EIS)analysis.These results can be attributed to the self-polarization exhibited by the inserted BFO thin film,which promoted the charge separation and transfer efficiency of the BVO photoanodes. 展开更多
关键词 PHOTOELECTROCHEMICAL PHOTOANODE BiVO_(4) ferroelectric materials BiFeO_(3)
下载PDF
Structure,ferroelectric,and enhanced fatigue properties of sol–gel-processed new Bi-based perovskite thin films of Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)
3
作者 宋伟宾 席国强 +10 位作者 潘昭 刘锦 叶旭斌 刘哲宏 王潇 单鹏飞 张林兴 鲁年鹏 樊龙龙 秦晓梅 龙有文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期608-615,共8页
Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT... Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT) are deposited on Pt(111)/Ti/SiO_(2)/Si substrates in the present study by the traditional sol–gel method.Their structures and related ferroelectric and fatigue characteristics are studied in-depth.The BCT–PT thin films exhibit good crystallization within the phase-pure perovskite structure,besides,they have a predominant(100) orientation together with a dense and homogeneous microstructure.The remnant polarization(2P_(r)) values at 30 μC/cm^(2) and 16 μC/cm^(2) are observed in 0.1BCT–0.9PT and 0.2BCT–0.8PT thin films,respectively.More intriguingly,although the polarization values are not so high,0.2BCT–0.8PT thin films show outstanding polarization fatigue properties,with a high switchable polarization of 93.6% of the starting values after 10^(8) cycles,indicating promising applications in ferroelectric memories. 展开更多
关键词 ferroelectric thin films PEROVSKITE PbTiO_(3)-BiMeO_(3)
下载PDF
Hole-Doped Nonvolatile and Electrically Controllable Magnetism in van der Waals Ferroelectric Heterostructures
4
作者 姜新新 王智宽 +5 位作者 李冲 孙雪莲 杨磊 李冬梅 崔彬 刘德胜 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期107-119,共13页
Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information.Here... Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information.Here, we propose a design for two-dimensional van der Waals heterostructures(vdWHs) that can host ferroelectricity and ferromagnetism simultaneously under hole doping. By contacting an In Se monolayer and forming an InSe/In_(2)Se_(3) vd WH, the switchable built-in electric field from the reversible out-of-plane polarization enables robust control of the band alignment. Furthermore, switching between the two ferroelectric states(P_↑ and P_↓)of hole-doped In_(2)Se_(3) with an external electric field can interchange the ON and OFF states of the nonvolatile magnetism. More interestingly, doping concentration and strain can effectively tune the magnetic moment and polarization energy. Therefore, this provides a platform for realizing multiferroics in ferroelectric heterostructures,showing great potential for use in nonvolatile memories and ferroelectric field-effect transistors. 展开更多
关键词 polarization ferroelectric DOPING
下载PDF
Reliable ferroelectricity down to cryogenic temperature in wakeup free Hf_(0.5)Zr_(0.5)O_(2)thin films by thermal atomic layer deposition
5
作者 Shuyu Wu Rongrong Cao +6 位作者 Hao Jiang Yu Li Xumeng Zhang Yang Yang Yan Wang Yingfen Wei Qi Liu 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期33-37,共5页
The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are fre... The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are free from the wake-up effect are investigated systematically from room temperature(300 K)to cryogenic temperature(30 K).We observe a consistent decrease in permittivity(εr)and a progressive increase in coercive electric field(Ec)as temperatures decrease.Our investigation reveals exceptional stability in the double remnant polarization(2P_(r))of our ferroelectric thin films across a wide temperature range.Specifically,at 30 K,a 2P_(r)of 36μC/cm^(2)under an applied electric field of 3.0 MV/cm is achieved.Moreover,we observed a reduced fatigue effect at 30 K in comparison to 300 K.The stable ferroelectric properties and endurance characteristics demonstrate the feasibility of utilizing HfO_(2)based ferroelectric thin films for cryo-electronics applications. 展开更多
关键词 hafnia-zirconia solid solution ferroelectricITY cryogenic temperature wake-up effect
下载PDF
Charge trapping effect at the interface of ferroelectric/interlayer in the ferroelectric field effect transistor gate stack
6
作者 孙晓清 徐昊 +2 位作者 柴俊帅 王晓磊 王文武 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期457-464,共8页
We study the charge trapping phenomenon that restricts the endurance of n-type ferroelectric field-effect transistors(FeFETs)with metal/ferroelectric/interlayer/Si(MFIS)gate stack structure.In order to explore the phy... We study the charge trapping phenomenon that restricts the endurance of n-type ferroelectric field-effect transistors(FeFETs)with metal/ferroelectric/interlayer/Si(MFIS)gate stack structure.In order to explore the physical mechanism of the endurance failure caused by the charge trapping effect,we first establish a model to simulate the electron trapping behavior in n-type Si FeFET.The model is based on the quantum mechanical electron tunneling theory.And then,we use the pulsed I_d-V_g method to measure the threshold voltage shift between the rising edges and falling edges of the FeFET.Our model fits the experimental data well.By fitting the model with the experimental data,we get the following conclusions.(i)During the positive operation pulse,electrons in the Si substrate are mainly trapped at the interface between the ferroelectric(FE)layer and interlayer(IL)of the FeFET gate stack by inelastic trap-assisted tunneling.(ii)Based on our model,we can get the number of electrons trapped into the gate stack during the positive operation pulse.(iii)The model can be used to evaluate trap parameters,which will help us to further understand the fatigue mechanism of FeFET. 展开更多
关键词 ferroelectric INTERFACE ferroelectric field-effect transistors(FeFETs) charge trapping
下载PDF
Modulated optical and ferroelectric properties in a lateral structured ferroelectric/semiconductor van der Waals heterojunction
7
作者 陈珊珊 张新昊 +5 位作者 王广灿 陈朔 马和奇 孙天瑜 满宝元 杨诚 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期509-516,共8页
Modulation between optical and ferroelectric properties was realized in a lateral structured ferroelectric CuInP_(2)S_(6)(CIPS)/semiconductor MoS_(2) van der Waals heterojunction.The ferroelectric hysteresis loop area... Modulation between optical and ferroelectric properties was realized in a lateral structured ferroelectric CuInP_(2)S_(6)(CIPS)/semiconductor MoS_(2) van der Waals heterojunction.The ferroelectric hysteresis loop area was modulated by the optical field.Two types of photodetection properties can be realized in a device by changing the ON and OFF states of the ferroelectric layer.The device was used as a photodetector in the OFF state but not in the ON state.The higher tunnelling electroresistance(~1.4×10^(4))in a lateral structured ferroelectric tunnelling junction was crucial,and it was analyzed and modulated by the barrier height and width of the ferroelectric CIPS/semiconductor MoS_(2) Schottky junction.The new parameter of the ferroelectric hysteresis loop area as a function of light intensity was introduced to analyze the relationship between the ferroelectric and photodetection properties.The proposed device has potential application as an optoelectronic sensory cell in the biological nervous system or as a new type of photodetector. 展开更多
关键词 ferroelectric tunnelling junction metal/ferroelectric/semiconductor tunnelling electroresistance optoelectronic properties
下载PDF
Large Energy Capacitive High-Entropy Lead-Free Ferroelectrics 被引量:3
8
作者 Liang Chen Huifen Yu +5 位作者 Jie Wu Shiqing Deng Hui Liu Lifeng Zhu He Qi Jun Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期69-82,共14页
Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market.Here,an ultrahigh energy storage density of~13.8 J cm^(-3)and a large efficiency of~82.4%are achie... Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market.Here,an ultrahigh energy storage density of~13.8 J cm^(-3)and a large efficiency of~82.4%are achieved in high-entropy lead-free relaxor ferroelectrics by increasing configuration entropy,named high-entropy strategy,realizing nearly ten times growth of energy storage density compared with low-entropy material.Evolution of energy storage performance and domain structure with increasing configuration entropy is systematically revealed for the first time.The achievement of excellent energy storage properties should be attributed to the enhanced random field,decreased nanodomain size,strong multiple local distortions,and improved breakdown field.Furthermore,the excellent frequency and fatigue stability as well as charge/discharge properties with superior thermal stability are also realized.The significantly enhanced comprehensive energy storage performance by increasing configuration entropy demonstrates that high entropy is an effective but convenient strategy to design new high-performance dielectrics,promoting the development of advanced capacitors. 展开更多
关键词 High-entropy Energy storage LEAD-FREE Relaxor ferroelectrics Capacitors
下载PDF
Synergically enhanced piezocatalysis performance of eco-friendly(K_(0.52)Na_(0.48))NbO_(3) through ferroelectric polarization and defects 被引量:1
9
作者 Min Zhou Laijun Liang +8 位作者 Dingze Lu Xiaomei Lu Zheng Wang Fengzhen Huang Pengfei Cheng Dongdong Liu Mengqi Tian Qiuping Wang Yunjie Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期2044-2054,共11页
Piezocatalysis has attracted unprecedented research interest as a newly emerging catalysis technology.However,the inherent insulating property of ferroelectric materials ultimately leads to the poor vibration-electric... Piezocatalysis has attracted unprecedented research interest as a newly emerging catalysis technology.However,the inherent insulating property of ferroelectric materials ultimately leads to the poor vibration-electricity conversion ability.Herein,this work reports the(K_(0.52)Na_(0.48))NbO_(3) ferroelectric ceramics(KNNFCx),for which the FeCo modification strategy is proposed.The substitution of the moderate amount of FeCo(x=0.015)at Nb site not only optimizes ferroelectricity but also produces beneficial defects,notably increasing Rhodamine B water purification efficiency to 95%.The pinning effect of monovalent oxygen vacancies on ferroelectric domains is responsible for the excellent ferroelectric polarization of KNNFC0.015 through the generation of an internal field to promote charge carriers separation and reduce nonradiative recombination.Importantly,the accompanying electron carriers can easily move to the material surface and participate in redox reactions because they have low activation energy.Therefore,ferroelectric polarization and defects play synergetic roles in enhancing piezocatalytic performance. 展开更多
关键词 piezocatalytic water purification ferroelectric polarization beneficial defects
下载PDF
Ultraviolet photodetectors based on ferroelectric depolarization field
10
作者 Xiaoyu Zhou Qingqing Ke +2 位作者 Silin Tang Jilong Luo Zihan Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期487-498,I0013,共13页
Ultraviolet(UV)photodetectors are extensively adopted in the fields of the Internet of Things,optical communications and imaging.Nowadays,with broadening the application scope of UV photodetectors,developing integrate... Ultraviolet(UV)photodetectors are extensively adopted in the fields of the Internet of Things,optical communications and imaging.Nowadays,with broadening the application scope of UV photodetectors,developing integrated devices with more functionalities rather than basic photo-detecting ability are highly required and have been triggered ever-growing interest in scientific and industrial communities.Ferroelectric thin films have become a potential candidate in the field of UV detection due to their wide bandgap and unique photovoltaic characteristics.Additionally,ferroelectric thin films perform excellent dielectric,piezoelectric,pyroelectric,acousto-optic effects,etc.,which can satisfy the demand for the diversified development of UV detectors.In this review,according to the different roles of ferroelectric thin films in the device,the UV photodetectors based on ferroelectric films are classified into ferroelectric depolarization field driven type,ferroelectric depolarization field and built-in electric field co-driven type,and ferroelectric field enhanced type.These three types of ferroelectric UV photodetectors have great potential and are expected to promote the development of a new generation of UV detection technology.At the end of the paper,the advantages and challenges of three types of ferroelectric UV photodetectors are summarized,and the possible development direction in the future is proposed. 展开更多
关键词 UV photodetector ferroelectric Thin film Depolarization field Built-in electric field
下载PDF
Correlating the Interfacial Polar-Phase Structure to the Local Chemistry in Ferroelectric Polymer Nanocomposites by Combined Scanning Probe Microscopy
11
作者 Jiajie Liang Shaojie Wang +4 位作者 Zhen Luo Jing Fu Jun Hu Jinliang He Qi Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期80-93,共14页
Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region... Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region.However,the structure-property correlation of the interface remains unestablished,and thus,the design of ferroelectric polymer nanocompos-ite has largely relied on the trial-and-error method.Here,a strategy that combines multi-mode scanning probe microscopy-based electrical charac-terization and nano-infrared spectroscopy is developed to unveil the local structure-property correlation of the interface in ferroelectric polymer nano-composites.The results show that the type of surface modifiers decorated on the nanoparticles can significantly influence the local polar-phase content and the piezoelectric effect of the polymer matrix surrounding the nano-particles.The strongly coupled polar-phase content and piezoelectric effect measured directly in the interfacial region as well as the computed bonding energy suggest that the property enhancement originates from the formation of hydrogen bond between the surface modifiers and the ferroelectric polymer.It is also directly detected that the local domain size of the ferroelectric polymer can impact the energy level and distribution of charge traps in the interfacial region and eventually influence the local dielectric strength. 展开更多
关键词 INTERFACES ferroelectric polymers NANOCOMPOSITES Scanning probe microscopy Nano-infrared spectroscopy
下载PDF
Tensile stress regulated microstructures and ferroelectric properties of Hf_(0.5)Zr_(0.5)O_(2) films
12
作者 霍思颖 郑俊锋 +4 位作者 刘远洋 李育姗 陶瑞强 陆旭兵 刘俊明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期61-66,共6页
The discovery of ferroelectricity in HfO_(2) based materials reactivated the research on ferroelectric memory.However,the complete mechanism underlying its ferroelectricity remains to be fully elucidated.In this study... The discovery of ferroelectricity in HfO_(2) based materials reactivated the research on ferroelectric memory.However,the complete mechanism underlying its ferroelectricity remains to be fully elucidated.In this study,we conducted a systematic study on the microstructures and ferroelectric properties of Hf_(0.5)Zr_(0.5)O_(2)(HZO)thin films with various annealing rates in the rapid thermal annealing.It was observed that the HZO thin films with higher annealing rates demonstrate smaller grain size,reduced surface roughness and a higher portion of orthorhombic phase.Moreover,these films exhibited enhanced polarization values and better fatigue cycles compared to those treated with lower annealing rates.The grazing incidence x-ray diffraction measurements revealed the existence of tension stress in the HZO thin films,which was weakened with decreasing annealing rate.Our findings revealed that this internal stress,along with the stress originating from the top/bottom electrode,plays a crucial role in modulating the microstructure and ferroelectric properties of the HZO thin films.By carefully controlling the annealing rate,we could effectively regulate the tension stress within HZO thin films,thus achieving precise control over their ferroelectric properties.This work established a valuable pathway for tailoring the performance of HZO thin films for various applications. 展开更多
关键词 HfO_(2) ferroelectric materials tension stress ANNEALING
下载PDF
Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-Ⅳmonochalcogenides MX(M=Sn,Ge;X=Se,Te,S)
13
作者 Maurice Franck Kenmogne Ndjoko 郭必诞 +1 位作者 彭银辉 赵宇军 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期396-401,共6页
Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of... Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS. 展开更多
关键词 two-dimensional material strain engineering ferroelectric photovoltaic materials hydrogen effect
下载PDF
Ferroelectricity and Large Rashba Splitting in Two-Dimensional Tellurium
14
作者 王垚 雷珍珍 +3 位作者 张金森 陶新永 华陈强 陆赟豪 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第11期86-92,共7页
Two-dimensional(2D)ferroelectric(FE)systems are promising candidates for non-volatile nanodevices.Previous studies mainly focused on 2D compounds.Though counter-intuitive,here we propose several new phases of telluriu... Two-dimensional(2D)ferroelectric(FE)systems are promising candidates for non-volatile nanodevices.Previous studies mainly focused on 2D compounds.Though counter-intuitive,here we propose several new phases of tellurium with(anti)ferroelectricity.Two-dimensional films can be viewed as a collection of one-dimensional chains,and lone-pair instability is responsible for the(anti)ferroelectricity.The total polarization is determined to be 0.34×10^(-10)C/m for the FE ground state.Due to the local polarization field in the FE film,we show a large Rashba splitting(α_(R)~2 eV·?)with nonzero spin Hall conductivity for experimental detection.Furthermore,a dipole-like distribution of Berry curvature is verified,which may facilitate a nonlinear Hall effect.Because Rashba-splitting/Berry-curvature distributions are fully coupled with a polarization field,they can be reversed through FE phase transition.Our results not only broaden the elemental FE materials,but also shed light on their intriguing transport phenomena. 展开更多
关键词 transition ferroelectric CURVATURE
下载PDF
Competition between Stepwise Polarization Switching and Chirality Coupling in Ferroelectric GeS Nanotubes
15
作者 王浩臣 王智灏 +3 位作者 陈宣言 魏苏淮 朱文光 张燮 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第4期80-84,共5页
Ferroelectricity of group-Ⅳ chalcogenides MX(M = Ge,Sn;X = Se,S) monolayers has been extensively investigated.However,how the ferroelectricity evolves in their one-dimensional nanotubes remains largely unclear.Employ... Ferroelectricity of group-Ⅳ chalcogenides MX(M = Ge,Sn;X = Se,S) monolayers has been extensively investigated.However,how the ferroelectricity evolves in their one-dimensional nanotubes remains largely unclear.Employing an accurate deep-learning interatomic potential of first-principles precision,we uncover a general stepwise mechanism for polarization switching in zigzag and chiral Ge S nanotubes,which has an energy barrier that is substantially lower than the one associated with the conventional one-step switching mechanism.The switching barrier(per atom) gradually decreases with increasing the number of intermediate steps and converges to a value that is almost independent of the tube diameter.In the chiral Ge S nanotubes,the switching path of polarization with chirality coupling is preferred at less intermediate steps.This study unveils novel ferroelectric switching behaviors in one-dimensional nanotubes,which is critical to coupling ferroelectricity and chirality. 展开更多
关键词 ferroelectric STEPS COUPLING
下载PDF
A Ferroelectric Domain-Wall Transistor
16
作者 欧阳俊 孙杰 +1 位作者 李一鸣 江安全 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第3期82-86,共5页
On the basis of novel properties of ferroelectric conducting domain walls,the domain wall nanoelectronics emerges and provides a brand-new dimension for the development of high-density,high-speed and energy-efficient ... On the basis of novel properties of ferroelectric conducting domain walls,the domain wall nanoelectronics emerges and provides a brand-new dimension for the development of high-density,high-speed and energy-efficient nanodevices.For in-memory computing,three-terminal devices with both logic and memory functions such as transistors purely based on ferroelectric domain walls are urgently required.Here,a prototype ferroelectric domain-wall transistor with a well-designed coplanar electrode geometry is demonstrated on epitaxial Bi Fe O_(3)thin films.For the logic function,the current switching between on/off states of the transistor depends on the creation or elimination of conducting domain walls between drain and source electrodes.For the data storage,the transistor can maintain nonvolatile on/off states after the write/erase operations,providing an innovative approach for the development of the domain wall nanoelectronics. 展开更多
关键词 DRAIN walls ferroelectric
下载PDF
Surface Ferron Excitations in Ferroelectrics and Their Directional Routing
17
作者 Xi-Han Zhou Chengyuan Cai +4 位作者 Ping Tang R.L.Rodríguez-Suárez Sergio M.Rezende Gerrit E.W.Bauer Tao Yu 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第8期68-73,共6页
The duality between electric and magnetic dipoles inspires recent comparisons between ferronics and magnonics.Here we predict surface polarization waves or“ferrons”in ferroelectric insulators,taking the long-range d... The duality between electric and magnetic dipoles inspires recent comparisons between ferronics and magnonics.Here we predict surface polarization waves or“ferrons”in ferroelectric insulators,taking the long-range dipolar interaction into account.We predict properties that are strikingly different from the magnetic counterpart,i.e.the surface Damon-Eshbach magnons in ferromagnets.The dipolar interaction pushes the ferron branch with locked circular polarization and momentum to the ionic plasma frequency.The low-frequency modes are on the other hand in-plane polarized normal to their wave vectors.The strong anisotropy of the lower branch renders directional emissions of electric polarization and chiral near fields when activated by a focused laser beam,allowing optical routing in ferroelectric devices. 展开更多
关键词 POLARIZATION branch ferroelectric
下载PDF
Ferroelectric domain wall memory
18
作者 李一鸣 孙杰 江安全 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期14-20,共7页
Ferroelectric domain walls appear as sub-nanometer-thick topological interfaces separating two adjacent domains in different orientations,and can be repetitively created,erased,and moved during programming into differ... Ferroelectric domain walls appear as sub-nanometer-thick topological interfaces separating two adjacent domains in different orientations,and can be repetitively created,erased,and moved during programming into different logic states for the nonvolatile memory under an applied electric field,providing a new paradigm for highly miniaturized low-energy electronic devices.Under some specific conditions,the charged domain walls are conducting,differing from their insulating bulk domains.In the past decade,the emergence of atomic-layer scaling solid-state electronic devices is such demonstration,resulting in the rapid rise of domain wall nano-electronics.This review aims to the latest development of ferroelectric domain-wall memories with the presence of the challenges and opportunities and the roadmap to their future commercialization. 展开更多
关键词 domain wall MEMORY ferroelectric
下载PDF
Coupled Ferroelectricity and Correlated States in a Twisted Quadrilayer MoS_(2) Moiré Superlattice
19
作者 吴帆帆 李璐 +12 位作者 徐巧玲 刘乐 袁亚龙 赵交交 黄智恒 昝晓洲 Kenji Watanabe Takashi Taniguchi 时东霞 冼乐德 杨威 杜罗军 张广宇 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第4期68-73,共6页
Moiré superlattices have emerged as a highly controllable quantum platform for exploration of various fascinating phenomena,such as Mott insulator states,ferroelectric order,unconventional superconductivity and o... Moiré superlattices have emerged as a highly controllable quantum platform for exploration of various fascinating phenomena,such as Mott insulator states,ferroelectric order,unconventional superconductivity and orbital ferromagnetism.Although remarkable progress has been achieved,current research in moiré physics has mainly focused on the single species properties,while the coupling between distinct moiré quantum phenomena remains elusive.Here we demonstrate,for the first time,the strong coupling between ferroelectricity and correlated states in a twisted quadrilayer MoS2moiré superlattice,where the twist angles are controlled in sequence to be ~57°,~0°,and ~-57°.Correlated insulator states are unambiguously established at moiré band filling factors v = 1,2,3 of twisted quadrilayer MoS_(2).Remarkably,ferroelectric order can occur at correlated insulator states and disappears quickly as the moiré band filling deviates from the integer fillings,providing smoking gun evidences of the coupling between ferroelectricity and correlated states.Our results demonstrate the coupling between different moiré quantum properties and will hold great promise for new moiré physics and applications. 展开更多
关键词 ferroelectric quantum TWISTED
下载PDF
Ferroelectricity of pristine Hf_(0.5)Zr_(0.5)O_(2) films fabricated by atomic layer deposition
20
作者 陈璐秋 张晓旭 +12 位作者 冯光迪 刘逸飞 郝胜兰 朱秋香 冯晓钰 屈可 杨振中 祁原深 Yachin Ivry Brahim Dkhil 田博博 褚君浩 段纯刚 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期684-688,共5页
Hafnium-based ferroelectric films,remaining their ferroelectricity down to nanoscale thickness,present a promising application for low-power logic devices and nonvolatile memories.It has been appealing for researchers... Hafnium-based ferroelectric films,remaining their ferroelectricity down to nanoscale thickness,present a promising application for low-power logic devices and nonvolatile memories.It has been appealing for researchers to reduce the required temperature to obtain the ferroelectric phase in hafnium-based ferroelectric films for applications such as flexible and wearable electronics.This work demonstrates that a remanent polarization(P_(r))value of>5μC/cm^(2)can be obtained in asdeposited Hf_(0.5)Zr_(0.5)O_(2)(HZO)films that are fabricated by thermal atomic layer deposition(TALD)under low temperature of 250℃.The ferroelectric orthorhombic phase(o-phase)in the as-deposited HZO films is detected by scanning transmission electron microscopy(STEM).This low fabrication temperature further extends the compatibility of ferroelectric HZO films to flexible electronics and avoids the cost imposed by following high-temperature annealing treatments. 展开更多
关键词 Hf_(0.5)Zr_(0.5)O_(2)(HZO) ferroelectric ORTHORHOMBIC without annealing
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部