Micromechanical finite element methods are developed based on a nonlinear constitutive model of ferroelectric polycrystals. Electromechanical behaviors ahead of an internal electrode tip are numerically simulated in m...Micromechanical finite element methods are developed based on a nonlinear constitutive model of ferroelectric polycrystals. Electromechanical behaviors ahead of an internal electrode tip are numerically simulated in multilayer ferroelectric actuators. Around the electrode edge, the nonuniform electric field generates a concentration of stress due to the incompatible strain as well as spontaneous strain. The preferred domain switching enhances the concentration of residual stress and may cause the actuators to crack. An electrically permeable crack emanating from an internal electrode is analyzed. A large scale domain switching zone is found in the vicinity of crack tips. The larger the actuating strain and electric field are, the larger the switching zone will be. The size of switching zone even reaches the scale of crack length with increasing electromechanical loading.展开更多
The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits s...The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits stable bipolar resistive switching characteristic, good retention performance, and reversal characteristic. Under different pulse voltages and light fields, four stable resistance states can also be realized. The analysis shows that the main conduction mechanism of the resistive switching characteristic of the heterojunction is space charge limited current(SCLC) effect. After the comprehensive analysis of the band diagram and the P–E ferroelectric property of the multilayer heterojunction, we can deduce that the SCLC is formed by the effect of the oxygen vacancy which is controlled by ferroelectric polarizationmodulated change of interfacial barrier. And the effective photo-generated carrier also plays a regulatory role in resistance state(RS), which is formed by the double ferroelectric layer Ba TiO3/BiFeO3 under different light fields. This research is of potential application values for developing the multi-state non-volatile resistance random access memory(RRAM) devices based on ferroelectric materials.展开更多
The 0.9Pb(Sc0.5Ta0.5)O3-0.1PbTiO3/0.55Pb(Sc0.5Ta0.5)O3-0.45 PbTiO3 multilayer thin films((PSTT10/45)n, n = 1-6, 10) are deposited on SiO2/Si(100) substrates by radio frequency magnetron sputtering technique ...The 0.9Pb(Sc0.5Ta0.5)O3-0.1PbTiO3/0.55Pb(Sc0.5Ta0.5)O3-0.45 PbTiO3 multilayer thin films((PSTT10/45)n, n = 1-6, 10) are deposited on SiO2/Si(100) substrates by radio frequency magnetron sputtering technique with La Ni O3 buffer and electrode layer, and the films are subsequently annealed by a two-step rapid thermal approach. It is found that the interfacial density of the film has an important influence on the electric property of the film. The electric property of the film increases and reaches its critical point with the increase of interface density, and then decreases with the further increase of the interface density. With an interfacial density of 16 μm-1, the film shows an optimized dielectric property(high dielectric constant, εr = 765, lowest dielectric loss, tan δ = 0.041, at 1 k Hz) and ferroelectric property(highest remnant polarization,2Pr = 36.9 μC/cm2, low coercive field, 2Ec = 71.9 k V/cm). The possible reason for the electric behavior of the film is the competition of the interface stress with the interface defect.展开更多
基金supported by the National Natural Science Foundation of China (11472205)the Fundamental Research Funds for the Central Universities in China
文摘Micromechanical finite element methods are developed based on a nonlinear constitutive model of ferroelectric polycrystals. Electromechanical behaviors ahead of an internal electrode tip are numerically simulated in multilayer ferroelectric actuators. Around the electrode edge, the nonuniform electric field generates a concentration of stress due to the incompatible strain as well as spontaneous strain. The preferred domain switching enhances the concentration of residual stress and may cause the actuators to crack. An electrically permeable crack emanating from an internal electrode is analyzed. A large scale domain switching zone is found in the vicinity of crack tips. The larger the actuating strain and electric field are, the larger the switching zone will be. The size of switching zone even reaches the scale of crack length with increasing electromechanical loading.
基金Project supported by the Scientific Research Program of Hunan Provincial Education Department,China(Grant No.18C0232)the International Cooperative Extension Program of Changsha University of Science and Technology,China(Grant No.2019IC35)
文摘The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits stable bipolar resistive switching characteristic, good retention performance, and reversal characteristic. Under different pulse voltages and light fields, four stable resistance states can also be realized. The analysis shows that the main conduction mechanism of the resistive switching characteristic of the heterojunction is space charge limited current(SCLC) effect. After the comprehensive analysis of the band diagram and the P–E ferroelectric property of the multilayer heterojunction, we can deduce that the SCLC is formed by the effect of the oxygen vacancy which is controlled by ferroelectric polarizationmodulated change of interfacial barrier. And the effective photo-generated carrier also plays a regulatory role in resistance state(RS), which is formed by the double ferroelectric layer Ba TiO3/BiFeO3 under different light fields. This research is of potential application values for developing the multi-state non-volatile resistance random access memory(RRAM) devices based on ferroelectric materials.
基金Project supported by the National Natural Science Foundation of China(Grant No.60771016)the Scientific Research Foundation of Mianyang Normal University,China(Grant No.QD2013A07)
文摘The 0.9Pb(Sc0.5Ta0.5)O3-0.1PbTiO3/0.55Pb(Sc0.5Ta0.5)O3-0.45 PbTiO3 multilayer thin films((PSTT10/45)n, n = 1-6, 10) are deposited on SiO2/Si(100) substrates by radio frequency magnetron sputtering technique with La Ni O3 buffer and electrode layer, and the films are subsequently annealed by a two-step rapid thermal approach. It is found that the interfacial density of the film has an important influence on the electric property of the film. The electric property of the film increases and reaches its critical point with the increase of interface density, and then decreases with the further increase of the interface density. With an interfacial density of 16 μm-1, the film shows an optimized dielectric property(high dielectric constant, εr = 765, lowest dielectric loss, tan δ = 0.041, at 1 k Hz) and ferroelectric property(highest remnant polarization,2Pr = 36.9 μC/cm2, low coercive field, 2Ec = 71.9 k V/cm). The possible reason for the electric behavior of the film is the competition of the interface stress with the interface defect.