期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Magnon energy gap in a four-layer ferromagnetic superlattice
1
作者 邱荣科 宋攀攀 +1 位作者 张志东 郭连权 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第10期3894-3901,共8页
The magnon energy band in a four-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that three modulated energy gaps exist in the magnon ene... The magnon energy band in a four-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that three modulated energy gaps exist in the magnon energy band along Kx direction perpendicular to the superlattice plane. The spin quantum numbers and the interlayer exchange couplings all affect the three energy gaps. The magnon energy gaps of the four-layer ferromagnetic superlattice are different from those of the three-layer one. For the four-layer ferromagnetic superlattice, the disappearance of the magnon energy gaps △ω12, △ω23 and △ω34 all correlates with the symmetry of this system. The zero energy gap △ω23 correlates with the symmetry of interlayer exchange couplings, while the vanishing of the magnon energy gaps △ω12 and △ω34 corresponds to a translational symmetry of x-direction in the lattice. When the parameters of the system deviate from these symmetries, the three energy gaps will increase. 展开更多
关键词 layered ferromagnetic superlattice magnon energy gap spin quantum number interlayer exchange couplings
下载PDF
Current spin polarization and spin injection efficiency in ZnO-based ferromagnetic semiconductor junctions
2
作者 Gang JI Ze ZHANG +3 位作者 Yanxue CHEN Shishen YAN Yihua LIU Liangmo MEI 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第2期153-160,共8页
[FeNi(3 nm)/Zn1-xCoxO(3 nm)]2/ZnO(d nm)/[Zn1-xCoxO(3 nm)/Co(3 nm)]2 (d=3 and 10) semiconductor junctions were prepared by magnetron sputtering system and photolithography. The spin valve effect was observe... [FeNi(3 nm)/Zn1-xCoxO(3 nm)]2/ZnO(d nm)/[Zn1-xCoxO(3 nm)/Co(3 nm)]2 (d=3 and 10) semiconductor junctions were prepared by magnetron sputtering system and photolithography. The spin valve effect was observed in these junctions because the utility of the ferromagnetic composite layers acted as soft and hard magnetic layers. The electrical detection was performed by measuring the magnetoresistance of these junctions to investigate the current spin polarization asc in the ZnO layer and the spin injection efficiency η of spin-polarized electrons. asc was reduced from 11.7% (and 10.5%) at 90 K to 7.31% (and 5.93%) at room temperature for d=3 (and d=10). And η was reduced from 39.5% (and 35.5%) at 90 K to 24.7% (and 20.0%) at room temperature for d=3 (and d=10). 展开更多
关键词 Spin injection Electrical detection MAGNETORESISTANCE Room temperature ferromagnetic semiconductor ferromagnetic composite layers
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部