Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry, as evidenced by a wealth of crystal structure data from c...Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry, as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD). However, the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure. With the development of high-resolution synchrotron XRD, more and more magnetic transitions have been found to be accompanied by simultaneous structural changes. In this article, we review our recent progress in understand- ing the structural change at a ferromagnetic transition, including synchrotron XRD evidence of structural changes at the ferromagnetic transition, a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions, new insight into magnetic morphotropic phase boundaries (MPB) and so on. Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here. In short, this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition, which may provide new insight for developing highly magneto-responsive materials.展开更多
In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. He...In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. Here, utilizing highly sensitive susceptometry of scanning superconducting quantum interference device microscopy, we probe the spin correlations of ABC-stacked Cr Br3under zero magnetic field. We identify a plateau feature in susceptibility above the critical temperature(TC) in thick samples.It signifies a crossover regime induced by the competition between easy-plane intralayer exchange anisotropy versus uniaxial interlayer anisotropy. The evolution of the critical behavior from the bulk to 2D shows that the competition between the anisotropies is magnified in the reduced dimension. It leads to a strongly frustrated ferromagnetic transition in the bilayer with fluctuation on the order of TC, which is distinct from both the monolayer and the bulk. Our observation demonstrates unconventional 2D critical behavior on a honeycomb lattice.展开更多
Kagome magnets with diverse topological quantum responses are crucial for next-generation topological engineering.The anisotropic magnetism and band evolution induced by ferromagnetic phase transition(FMPT)is reported...Kagome magnets with diverse topological quantum responses are crucial for next-generation topological engineering.The anisotropic magnetism and band evolution induced by ferromagnetic phase transition(FMPT)is reported in a newly discovered titanium-based kagome ferromagnet Sm Ti3Bi4,which features a distorted Ti kagome lattice and Sm atomic zig-zag chains.Temperature-dependent resistivity,heat capacity,and magnetic susceptibility reveal a ferromagnetic ordering temperature Tc of23.2 K.A large magnetic anisotropy,observed by applying the magnetic field along three crystallographic axes,identifies the b axis as the easy axis.Angle-resolved photoemission spectroscopy with first-principles calculations unveils the characteristic kagome motif,including the Dirac point at the Fermi level and multiple van Hove singularities.Notably,a band splitting and gap closing attributed to FMPT is observed,originating from the exchange coupling between Sm 4 f local moments and itinerant electrons of the kagome Ti atoms,as well as the time-reversal symmetry breaking induced by the long-range ferromagnetic order.Considering the large in-plane magnetization and the evolution of electronic structure under the influence of ferromagnetic ordering,such materials promise to be a new platform for exploring the intricate electronic properties and magnetic phases based on the kagome lattice.展开更多
High quality single crystal CaFe4As3 was grown by using the Sn flux method. Unlike layered CaFe2As2, CaFe4As3 crystallizes in an orthorhombic three-dimensional structure. Two magnetic ordering transitions are observed...High quality single crystal CaFe4As3 was grown by using the Sn flux method. Unlike layered CaFe2As2, CaFe4As3 crystallizes in an orthorhombic three-dimensional structure. Two magnetic ordering transitions are observed at - 90 K and - 27 K, respectively. The high temperature transition is an antiferromagnetic(AF) ordering transition. However, the low temperature transition shows complex properties. It shows a ferromagnetic-like transition when a field is applied along b-axis, while antiferromagnetism-like transition when a field is applied perpendicular to b-axis. These results suggest that the low temperature transition at 27 K is a first-order transition from an AF state to a canted AF state. In addition, the low temperature electron specific heat coefficient reaches as high as 143 mJ/mol.K2, showing a heavy fermion behavior.展开更多
Improved life assessment techniques will enable engineering components to be replaced before failure, thereby reducing the risk of industrial accidents as well as minimizing financial loss due to unscheduled outages. ...Improved life assessment techniques will enable engineering components to be replaced before failure, thereby reducing the risk of industrial accidents as well as minimizing financial loss due to unscheduled outages. For components operating at high temperatures, temperature measurement is very important. In many situations, the environmental conditions are too hostile for conventional techniques to be used. Researchers over the world have been looking for new techniques for temperature measurement and one such device, called Feroplug, has been developed previously by the and coworkers. The Feroplug has been patented in USA, UK and Europe by the British Technology Group. The underlying principle of the Feroplug is based on the transformation of ferrite in some specially designed duplex stainless steels. This paper describes a new invention called Sigmaplug which is a new development of the Feroplug but using an entirely different physical principle. It was discovered that the sigma phase in Fe展开更多
Moessbauer studies on the effect of substitution with 3% Al, Co, Mn atoms in the intermetallic compound of Hf0.8Ta0.2Fe2 are reported. The Al substitution leads to increase of the FM-AFM transition temperature and to ...Moessbauer studies on the effect of substitution with 3% Al, Co, Mn atoms in the intermetallic compound of Hf0.8Ta0.2Fe2 are reported. The Al substitution leads to increase of the FM-AFM transition temperature and to decrease of the AFM-PM transition temperature. The Co substitution leads to disappearance of the FM state, only showing some FM impurity component, while Mn substituted compound indicates coexistence of FM and AFM states at low temperature. The phenomena imply complex itinerant electron properties in these magnetic systems.展开更多
A high-quality SrFe0.8Co0.2O3 single crystal is prepared by combining floating-zone and high-pressure treatment methods. Its Magnetocaloric effect is investigated by magnetic measurements. A paramagnetism-to-ferromagn...A high-quality SrFe0.8Co0.2O3 single crystal is prepared by combining floating-zone and high-pressure treatment methods. Its Magnetocaloric effect is investigated by magnetic measurements. A paramagnetism-to-ferromagnetism tran- sition is found at about 270 K and this transition is a second-order one in nature as confirmed by Arrott plots. The saturated moment obtained at 2 K and 7 T is 3.63 μB/f.u. The maximal value of magnetic entropy change measured at 5 T is about 4.0 J·kg-1 ·K-1. The full wide at half maximum for a magnetic entropy change peak observed in SrFe0.8Co0.2O3 is considerably large. As a consequence, the relative cooling power value of SrFe0.8Co0.2O3 obtained at 5 T is 331 J/kg, which is greatly higher than those observed in other perovskite oxides. The present work therefore provides a promising candidate for magnetic refrigeration near room temperature.展开更多
Motivated by the recent discovery of a continuous ferromagnetic quantum phase transition in Ce Rh_(6)Ge_(4) and its distinction from other U-based heavy fermion metals such as UGe_(2),we develop a unified explanation ...Motivated by the recent discovery of a continuous ferromagnetic quantum phase transition in Ce Rh_(6)Ge_(4) and its distinction from other U-based heavy fermion metals such as UGe_(2),we develop a unified explanation of their different ground state properties based on an anisotropic ferromagnetic Kondo-Heisenberg model.We employ an improved large-N Schwinger boson approach and predict a full phase diagram containing both a continuous ferromagnetic quantum phase transition for large magnetic anisotropy and first-order transitions for relatively small anisotropy.Our calculations reveal three different ferromagnetic phases including a half-metallic spin selective Kondo insulator with a constant magnetization.The Fermi surface topologies are found to change abruptly between different phases,consistent with that observed in UGe_(2).At finite temperatures,we predict the development of Kondo hybridization well above the ferromagnetic long-range order and its relocalization near the phase transition,in good agreement with band measurements in Ce Rh_(6)Ge_(4).Our results highlight the importance of magnetic anisotropy and provide a unified theory for understanding the ferromagnetic quantum phase transitions in heavy fermion metals.展开更多
Three factors control the transition from paramagnetic insulator to ferromagnetic metal. The first is the hole doping. The second factor is the average ionic radius of the A site cation rA. The last one concerns the i...Three factors control the transition from paramagnetic insulator to ferromagnetic metal. The first is the hole doping. The second factor is the average ionic radius of the A site cation rA. The last one concerns the ionic size mismatch σ^2 at the A site. In order to study the effect of σ^2, a series of samples were prepared with constant value of x and rA.展开更多
Using first-principles calculations, we study the tailoring of the electronic and magnetic properties of gallium sulfide nanoribbons(Ga2S2NRs) by mechanical strain. Hydrogen-passivated armchair-and zigzag-edged NRs...Using first-principles calculations, we study the tailoring of the electronic and magnetic properties of gallium sulfide nanoribbons(Ga2S2NRs) by mechanical strain. Hydrogen-passivated armchair-and zigzag-edged NRs(ANRs and ZNRs)with different widths are investigated. Significant effects in band gap and magnetic properties are found and analyzed. First,the band gaps and their nature of ANRs can be largely tailored by a strain. The band gaps can be markedly reduced, and show an indirect-direct(I-D) transition under a tensile strain. While under an increasing compressive strain, they undergo a series transitions of I-D-I-D. Five strain zones with distinct band structures and their boundaries are identified. In addition,the carrier effective masses of ANRs are also tunable by the strain, showing jumps at the boundaries. Second, the magnetic moments of(ferromagnetic) ZNRs show jumps under an increasing compressive strain due to spin density redistribution,but are unresponsive to tensile strains. The rich tunable properties by stain suggest potential applications of Ga2S2 NRs in nanoelectronics and optoelectronics.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB619401)the National Natural Science Foundation of China (Grant Nos. 51222104 and 51071117)the Fundamental Research Funds for Central Universities
文摘Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry, as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD). However, the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure. With the development of high-resolution synchrotron XRD, more and more magnetic transitions have been found to be accompanied by simultaneous structural changes. In this article, we review our recent progress in understand- ing the structural change at a ferromagnetic transition, including synchrotron XRD evidence of structural changes at the ferromagnetic transition, a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions, new insight into magnetic morphotropic phase boundaries (MPB) and so on. Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here. In short, this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition, which may provide new insight for developing highly magneto-responsive materials.
基金support by the National Key R&D Program of China (2021YFA1400100)the National Natural Science Foundation of China (11827805 and 12150003)+12 种基金Shanghai Municipal Science and Technology Major Project (2019SHZDZX01)support by the National Key R&D Program of China (2018YFE0202600)Beijing Natural Science Foundation (Z200005)support from JSPS KAKENHI (19H05790, 20H00354, and 21H05233)A3 Foresight by JSPSfinancial support from the National Natural Science Foundation of China (11874115)financial support from the Ministry of Science and Technology (MOST) of China (2018YFE0202700)the National Natural Science Foundation of China (11974422)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000)the Fundamental Research Funds for the Central Universities, Chinathe Research Funds of Renmin University of China (22XNKJ30)supported by the National Natural Science Foundation of China (12104504)the China Postdoctoral Science Foundation (2021 M693479)。
文摘In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. Here, utilizing highly sensitive susceptometry of scanning superconducting quantum interference device microscopy, we probe the spin correlations of ABC-stacked Cr Br3under zero magnetic field. We identify a plateau feature in susceptibility above the critical temperature(TC) in thick samples.It signifies a crossover regime induced by the competition between easy-plane intralayer exchange anisotropy versus uniaxial interlayer anisotropy. The evolution of the critical behavior from the bulk to 2D shows that the competition between the anisotropies is magnified in the reduced dimension. It leads to a strongly frustrated ferromagnetic transition in the bilayer with fluctuation on the order of TC, which is distinct from both the monolayer and the bulk. Our observation demonstrates unconventional 2D critical behavior on a honeycomb lattice.
基金supported by the Synergetic Extreme Condition User Facility(SECUF)the National Key Research and Development Program of China(Grant Nos.2022YFA1403800,2022YFA1403900,and 2018YFE0202600)+3 种基金the National Natural Science Foundation of China(Grant Nos.U22A6005,51832010,11888101,11925408,11921004,and 12188101)the Informatization Plan of the Chinese Academy of Sciences(Grant No.CASWX2021SF-0102)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB33000000,and XDB28000000)the“Dreamline”beamline of Shanghai Synchrotron Radiation Facility(SSRF)。
文摘Kagome magnets with diverse topological quantum responses are crucial for next-generation topological engineering.The anisotropic magnetism and band evolution induced by ferromagnetic phase transition(FMPT)is reported in a newly discovered titanium-based kagome ferromagnet Sm Ti3Bi4,which features a distorted Ti kagome lattice and Sm atomic zig-zag chains.Temperature-dependent resistivity,heat capacity,and magnetic susceptibility reveal a ferromagnetic ordering temperature Tc of23.2 K.A large magnetic anisotropy,observed by applying the magnetic field along three crystallographic axes,identifies the b axis as the easy axis.Angle-resolved photoemission spectroscopy with first-principles calculations unveils the characteristic kagome motif,including the Dirac point at the Fermi level and multiple van Hove singularities.Notably,a band splitting and gap closing attributed to FMPT is observed,originating from the exchange coupling between Sm 4 f local moments and itinerant electrons of the kagome Ti atoms,as well as the time-reversal symmetry breaking induced by the long-range ferromagnetic order.Considering the large in-plane magnetization and the evolution of electronic structure under the influence of ferromagnetic ordering,such materials promise to be a new platform for exploring the intricate electronic properties and magnetic phases based on the kagome lattice.
基金Project supported by the National Natural Science Foundation of China(Grant No.Y1JA011x11)
文摘High quality single crystal CaFe4As3 was grown by using the Sn flux method. Unlike layered CaFe2As2, CaFe4As3 crystallizes in an orthorhombic three-dimensional structure. Two magnetic ordering transitions are observed at - 90 K and - 27 K, respectively. The high temperature transition is an antiferromagnetic(AF) ordering transition. However, the low temperature transition shows complex properties. It shows a ferromagnetic-like transition when a field is applied along b-axis, while antiferromagnetism-like transition when a field is applied perpendicular to b-axis. These results suggest that the low temperature transition at 27 K is a first-order transition from an AF state to a canted AF state. In addition, the low temperature electron specific heat coefficient reaches as high as 143 mJ/mol.K2, showing a heavy fermion behavior.
文摘Improved life assessment techniques will enable engineering components to be replaced before failure, thereby reducing the risk of industrial accidents as well as minimizing financial loss due to unscheduled outages. For components operating at high temperatures, temperature measurement is very important. In many situations, the environmental conditions are too hostile for conventional techniques to be used. Researchers over the world have been looking for new techniques for temperature measurement and one such device, called Feroplug, has been developed previously by the and coworkers. The Feroplug has been patented in USA, UK and Europe by the British Technology Group. The underlying principle of the Feroplug is based on the transformation of ferrite in some specially designed duplex stainless steels. This paper describes a new invention called Sigmaplug which is a new development of the Feroplug but using an entirely different physical principle. It was discovered that the sigma phase in Fe
基金Supported by the National Natural Science Foundation of China under Grant No 20050284003.
文摘Moessbauer studies on the effect of substitution with 3% Al, Co, Mn atoms in the intermetallic compound of Hf0.8Ta0.2Fe2 are reported. The Al substitution leads to increase of the FM-AFM transition temperature and to decrease of the AFM-PM transition temperature. The Co substitution leads to disappearance of the FM state, only showing some FM impurity component, while Mn substituted compound indicates coexistence of FM and AFM states at low temperature. The phenomena imply complex itinerant electron properties in these magnetic systems.
基金supported by the National Basic Research Program of China(Grant No.2014CB921500)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07030300)
文摘A high-quality SrFe0.8Co0.2O3 single crystal is prepared by combining floating-zone and high-pressure treatment methods. Its Magnetocaloric effect is investigated by magnetic measurements. A paramagnetism-to-ferromagnetism tran- sition is found at about 270 K and this transition is a second-order one in nature as confirmed by Arrott plots. The saturated moment obtained at 2 K and 7 T is 3.63 μB/f.u. The maximal value of magnetic entropy change measured at 5 T is about 4.0 J·kg-1 ·K-1. The full wide at half maximum for a magnetic entropy change peak observed in SrFe0.8Co0.2O3 is considerably large. As a consequence, the relative cooling power value of SrFe0.8Co0.2O3 obtained at 5 T is 331 J/kg, which is greatly higher than those observed in other perovskite oxides. The present work therefore provides a promising candidate for magnetic refrigeration near room temperature.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0303103)the National Natural Science Foundation of China(Grant Nos.12174429,and 11974397)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33010100)。
文摘Motivated by the recent discovery of a continuous ferromagnetic quantum phase transition in Ce Rh_(6)Ge_(4) and its distinction from other U-based heavy fermion metals such as UGe_(2),we develop a unified explanation of their different ground state properties based on an anisotropic ferromagnetic Kondo-Heisenberg model.We employ an improved large-N Schwinger boson approach and predict a full phase diagram containing both a continuous ferromagnetic quantum phase transition for large magnetic anisotropy and first-order transitions for relatively small anisotropy.Our calculations reveal three different ferromagnetic phases including a half-metallic spin selective Kondo insulator with a constant magnetization.The Fermi surface topologies are found to change abruptly between different phases,consistent with that observed in UGe_(2).At finite temperatures,we predict the development of Kondo hybridization well above the ferromagnetic long-range order and its relocalization near the phase transition,in good agreement with band measurements in Ce Rh_(6)Ge_(4).Our results highlight the importance of magnetic anisotropy and provide a unified theory for understanding the ferromagnetic quantum phase transitions in heavy fermion metals.
文摘Three factors control the transition from paramagnetic insulator to ferromagnetic metal. The first is the hole doping. The second factor is the average ionic radius of the A site cation rA. The last one concerns the ionic size mismatch σ^2 at the A site. In order to study the effect of σ^2, a series of samples were prepared with constant value of x and rA.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174220 and 11374226)the Key Scientific Research Project of the Henan Institutions of Higher Learning,China(Grant No.16A140009)+2 种基金the Program for Innovative Research Team of Henan Polytechnic University,China(Grant Nos.T2015-3 and T2016-2)the Doctoral Foundation of Henan Polytechnic University,China(Grant No.B2015-46)the High-performance Grid Computing Platform of Henan Polytechnic University,China
文摘Using first-principles calculations, we study the tailoring of the electronic and magnetic properties of gallium sulfide nanoribbons(Ga2S2NRs) by mechanical strain. Hydrogen-passivated armchair-and zigzag-edged NRs(ANRs and ZNRs)with different widths are investigated. Significant effects in band gap and magnetic properties are found and analyzed. First,the band gaps and their nature of ANRs can be largely tailored by a strain. The band gaps can be markedly reduced, and show an indirect-direct(I-D) transition under a tensile strain. While under an increasing compressive strain, they undergo a series transitions of I-D-I-D. Five strain zones with distinct band structures and their boundaries are identified. In addition,the carrier effective masses of ANRs are also tunable by the strain, showing jumps at the boundaries. Second, the magnetic moments of(ferromagnetic) ZNRs show jumps under an increasing compressive strain due to spin density redistribution,but are unresponsive to tensile strains. The rich tunable properties by stain suggest potential applications of Ga2S2 NRs in nanoelectronics and optoelectronics.