Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CA...Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity.展开更多
In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization ...In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle.展开更多
Flax is considered to be one of the most significant dual-purpose crops for oil and fiber production in Egypt and worldwide.Biofertilizers have a substantial impact on various metabolic processes,including increased p...Flax is considered to be one of the most significant dual-purpose crops for oil and fiber production in Egypt and worldwide.Biofertilizers have a substantial impact on various metabolic processes,including increased photo-synthesis,endogenous hormone levels,ion absorption,nucleic acid synthesis,and protein synthesis.These factors collectively contribute to the growth and development of plants.Therefore,this study aims to investigate how three biofertilizers(Algae extract,CMS as a by-product of yeast,and Metalosate multi minerals as amino acids)can enhance both the quantity and quality of flax seed yield under sandy soil conditions.Two field experiments were conducted at the Experimental Station of National Research Centre in Nubaria District,Behira Governorate,Egypt during two seasons(2021/2022)using a randomized complete block design(RCBD).The results revealed significant differences among all tested biofertilizers in terms of various characteristics studied in flax.Foliar application of algae extract at a rate of 1.50 mL/L resulted in an increase in seed yield(ton/ha)by 26.69%&19.89%,straw yield(ton/ha)by 8.08%&17.12%,and oil yield(kg/ha)by 47.72%&33.69%compared to the control group during both seasons respectively.Foliar applications of algae extract at a rate of 1.50 mL/L along with CMS at a rate of 5 m L/L and amino acids at a rate of 1.50 mL/L demonstrated significantly higher macronutrient contents(N,P,K),micronutrient contents(Fe,Zn,Mn),seed oil content,and protein content in flax seeds during both seasons.The highest values for seed oil content and protein content%were obtained through foliar application of amino acids at a rate of 1.50 mL/L.It can be concluded that foliar sprays with these bio-fertilizers effectively improved flax performance by increasing seed straw and oil yields,nutrients oil,protein and fatty acids seeds contents.展开更多
Okra (Abelmoschus esculentus L.) is an herbaceous plant of the Malvaceae family. In Côte d’Ivoire, okra production is estimated to be over 193,000 tons. This low production is largely due to poor soils and hardl...Okra (Abelmoschus esculentus L.) is an herbaceous plant of the Malvaceae family. In Côte d’Ivoire, okra production is estimated to be over 193,000 tons. This low production is largely due to poor soils and hardly covers the needs of the population. To remedy this, growers systematically use mineral fertilizers. However, these fertilizers pollute the environment. To find an alternative to chemical fertilization and increase production, the effect of biofertilizers (Spaawet, Retone, Super Gro) compared with NPK mineral fertilizer was evaluated on Divo, Teriman, and Djonan F1 cultivars. The trial was set up in a factorial block design with three replications. Plant height, number of functional leaves, and crown diameter were assessed at 60 days after sowing (DAS). The time to 50% flowering, production time, and fruit yield were calculated. The results showed that the biofertilizer Retone induced the highest heights and number of functional leaves, with averages of 61.89 cm and 29.88 leaves, respectively. The diameter at the crown (17.77 mm) was highest with the NPK mineral fertilizer, and the shortest 50% flowering time, with an average of 47.61 days, was also obtained with the biofertilizer Retone. The NPK mineral fertilizer produced the longest production time, with an average of 35.25 days. The highest yields were obtained using Retone (11.07 t/ha) and NPK (9.52 t/ha) fertilizers. The “Divo<sub>*</sub>Retone” interaction produced the highest yield with an average of 12.19 t/ha. The biofertilizer Retone could therefore be used as an alternative fertilizer to chemical fertilization in okra crops, given its effect on the parameters assessed.展开更多
[Objectives]The paper was to explore the effect of K fertilizer on the absorption of mineral elements in greenhouse-grown strawberry fruits.[Methods]A systematic investigation was conducted on the effects of K fertili...[Objectives]The paper was to explore the effect of K fertilizer on the absorption of mineral elements in greenhouse-grown strawberry fruits.[Methods]A systematic investigation was conducted on the effects of K fertilizer dosage levels on the absorption of mineral elements in Fengxiang strawberries,an excellent variety suitable for cultivation in Anhui Province.The investigation was carried out under medium N and P conditions in a greenhouse.[Results]The N content of strawberry fruits increased as the K_(2)O dosage increased within the range of 0-250 kg/hm^(2).Similarly,the P content of strawberry fruits increased gradually with the increase of K_(2)O dosage within the range of 0-125 kg/hm^(2).[Conclusions]This study presents a basis for enhancing the absorption of mineral elements in strawberry fruit by applying K appropriately.展开更多
[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the ap...[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area.展开更多
One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and fro...One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and from PI to heading(HS)is expected to synchronize the double-peak N demand of rice.However,its effects on the yield and N use efficiency(NUE)of labor-intensive double-cropping rice were unknown.Two targeted CRU(CRU_(A)and CRU_(B))were compounded in five ratios(CRU_(A):CRU_(B)=10:0,7:3,5:5,3:7,and 0:10)to form five mixed fertilizers(BBFs):BBF1-5.A field experiment was performed to investigate the characteristics of N supply in early and late seasons under different BBFs and their effects on N uptake,yield,and ammonia volatilization(AV)loss from paddy fields of double-cropping rice.Conventional high-yield fertilization(CK,three split applications of urea)and zero-N treatments were established as controls.The N supply dropped significantly with the increased compound ratio of CRU_(B)during the period from TS to PI,but increased during the period from PI to HS.With the exception of the period from TS to PI in the late rice season,the N uptake of early and late rice maintained close synchronicity with the N supply of BBFs during the double-peak periods.Excessive N supply(BBF1 and BBF2)in the late rice season during the period from TS to PI increased N loss by AV.The effect of BBF on grain yield increase varied widely between seasons,irrespective of year.Among the BBFs,the BBF2 treatment of early rice not only stabilized the spikelets per panicle but also ensured a high number of effective panicles by promoting N uptake during the period from TS to PI and a high grain-filling percentage by appropriately reducing the N supply at the later PI stage,resulting in the highest rice yield.While stabilizing the effective panicle number,the BBF4 treatment of late rice increased the number of spikelets per panicle by promoting N uptake during the period from PI to HS,resulting in the highest rice yield.The two-year average yield and apparent N recovery efficiency of the BBF2 treatment during the early rice season were 9.6 t ha 1 and 45.3%,while those of late rice in BBF4 were 9.6 t ha 1 and 43.0%,respectively.The yield and NUE indexes of BBF2 in early rice and BBF4 in late rice showed no significant difference from those of CK.The AVs of BBF2 during the early rice season and of BBF4 during the late rice season were 50.0%and 76.8%lower,respectively,than those of CK.BBF2 and BBF4 could effectively replace conventional urea split fertilization in early and late rice seasons,ensuring rice yield and NUE and reducing AV loss in paddy fields.展开更多
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
Nitrogen(N)fertilization affects grain quality in common buckwheat(Fagopyrum esculentum Moench).But the effects of N fertilizer on various buckwheat protein parameters are not fully understood.This study aimed to inve...Nitrogen(N)fertilization affects grain quality in common buckwheat(Fagopyrum esculentum Moench).But the effects of N fertilizer on various buckwheat protein parameters are not fully understood.This study aimed to investigate the synthesis,accumulation,and quality of buckwheat protein under four N application rates in the Loess Plateau,China.Optimal N application(180 kg N ha-1)improved yield,agronomic traits,and N transport and increased protein yield and protein component accumulation.Prolamin and glutelin accumulation first increased and then decreased with increasing N application.The relationships between the contents of protein components and the amount of applied N generally followed quadratic functions.Nitrate reductase and glutamine synthetase activities first increased and then decreased with increasing N levels.Optimal N fertilizer increased the waterholding capacity and thermal stability of buckwheat protein and reduced its emulsification capacity,but negligibly changed its oil-absorption capacity.Hydrophobic amino acids and glutelin content were the main factors affecting protein quality.展开更多
The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resultin...The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution.This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status.A series of field experiments were conducted for six years with treatments as:farmer accustomed to fertilization used as control(CON),fertilizer decrement(KF),fertilizer decrement+watersaving irrigation(BMP1);combined application of organic and inorganic fertilizer+water-saving irrigation(BMP2),and combined application of controlled-release fertilizer(BMP3).A significant improvement was observed in soil organic matter(14.9%),nitrate nitrogen(106.7%),total phosphorus(23.9%),available phosphorus(26.2%),straw yield(44.8%),and grain yield(54.7%)with BMP2 treatment as compared to CON.The study concludes that integrating chemical and organic fertilizers with water-saving irrigation(BMP2)is a good approach to increasing corn productivity,ensuring water safety and improving soil health.The limitations of the current study include the identification of fertilizer type and its optimum dose,irrigation water type,and geographical position.展开更多
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge ef...240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.展开更多
Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivi...Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.展开更多
[Objectives]To study the impacts and demonstration effects of long-acting slow-release fertilizer application on economic yield of peanut.[Methods]The 25,30,35,40,45,50 kg of long-acting slow-release fertilizers were ...[Objectives]To study the impacts and demonstration effects of long-acting slow-release fertilizer application on economic yield of peanut.[Methods]The 25,30,35,40,45,50 kg of long-acting slow-release fertilizers were applied to 667 m 2 of peanuts,and different amounts of urea were applied together.[Results]Applying 40 kg of long-acting slow-release fertilizer and 10.45 kg of urea had the best effect.Compared with the application of ordinary compound fertilizers,the plants did not age prematurely,the leaf diseases were mild,the stems and leaves remained dark green when harvested,and the stems and leaves had a longer functional period.Bearing shoots increased by 1.7,single-plant full pods increased by 2.4,double-seed peanuts increased by 3.2,empty pods decreased by 0.5,and single-seed peanuts decreased by 0.7.The experimental demonstration results show that the spring-sowed peanuts had an average yield increase of 29.0-67.2 kg/667 m 2,and the yield increase rate was 7.35%-16.89%,and the difference was extremely significant.[Conclusions]In the high-yield cultivation of peanuts,the application of long-acting slow-release fertilizer can be promoted to improve peanut production.展开更多
For a long time,seasonal drought occurs frequently in Southwest China,and the management of water and fertilizer in kiwifruit orchards has no quantitative standards,which seriously affects the yield and quality of kiw...For a long time,seasonal drought occurs frequently in Southwest China,and the management of water and fertilizer in kiwifruit orchards has no quantitative standards,which seriously affects the yield and quality of kiwifruit.Therefore,the effects of water and fertilizer deficit regulation with drip irrigation(WFDRDI)on the quality of kiwifruit at different growth stages were explored to achieve water and fertilizer saving,and green and efficient production of kiwifruit.We select‘Jin Yan'kiwifruit and set two water deficit levels(W_(D20%)and W_(D40%))and three fertilizer deficit levels(F_(D15%),F_(D30%)and F_(D45%))at bud burst to leafing stage(stageⅠ),flowering to fruit set stage(stageⅡ),fruit expansion stage(stageⅢ)and fruit maturation stage(stageⅣ),respectively,with a full irrigation and fertilization as the control treatment(CK)in 2017and 2018.Results showed that the WFDRDI at stageⅡandⅢhad significant effect on fruit physical quality of kiwifruit,specifically,theⅢ-WD40%F_(D30%)andⅢ-W_(D20%)F_(D45%)treatments significantly increased fruit firmness by 13.62 and 15.59%(P<0.05),respectively;theⅡ-W_(D40%)F_(D15%)andⅢ-W_(D40%)F_(D15%)treatments significantly increased dry matter by 8.19 and 6.47%(P<0.05),respectively;theⅢ-W_(D20%)F_(D15%)treatment significantly increased single fruit weight and fruit volume by 9.33 and 12.65%(P<0.05),respectively;theⅡ-W_(D20%)F_(D15%)treatment significantly increased fruit water content by 1.99%(P<0.05).The WFDRDI had an obvious effect on fruit chemical quality of kiwifruit.TheⅢ-W_(D20%)F_(D45%),Ⅳ-W_(D40%)F_(D15%)andⅣ-W_(D20%)F_(D30%)treatments significantly increased vitamin C(Vc)content by 69.96,36.96 and 34.31%(P<0.05),respectively;theⅢ-W_(D40%)F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments significantly increased total soluble solid(TSS)content by 3.79 and 17.05%(P<0.05),respectively,and significantly increased soluble sugar content by 28.61 and 34.79%(P<0.05),respectively;the contents of fructose,glucose and sucrose also had a significantly increasing trend,which was increased significantly by 5.58–19.63%,40.55–60.36%and 54.03–54.92%in theⅢ-WD40%F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments(P<0.05),respectively;sugar–acid ratio was increased significantly in theⅣ-W_(D40%)F_(D15%)treatment by 64.65%(P<0.05).The degree and duration of water and fertilizer deficit had a comprehensive effect on fruit quality of kiwifruit.The WFDRDI at stageⅡandⅢcontribute to improving fruit physical quality,and the threshold of water and fertilizer deficit were 20 and 15%,respectively;stageⅢandⅣare the critical periods for improving fruit chemical quality by water and fertilizer coupling effect,and the threshold of water and fertilizer deficit were 40 and 15%,respectively.Therefore,aiming at precise water and fertilizer saving,theⅠ-W_(D20%)F_(D30%),Ⅱ-W_(D40%)F_(D15%),Ⅲ-W_(D40%)F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments under WFDRDI during the whole growth period of kiwifruit were the best mode to improve quality and production of kiwifruit.展开更多
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u...Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.展开更多
Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinat...Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.展开更多
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect...Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.展开更多
China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the ...China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.展开更多
[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity...[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County.展开更多
To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and ...To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation.展开更多
基金financially supported by the HAAFS Science and Technology Innovation Special Project China(2022KJCXZX-LYS-9)the Natural Science Foundation of Hebei Province China(C2021301004)the Key Research and Dvelopment Program of Hebei Province China(20326401D)。
文摘Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity.
文摘In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle.
基金the National Research Centre(NRC),Egypt,for providing funding for this student research。
文摘Flax is considered to be one of the most significant dual-purpose crops for oil and fiber production in Egypt and worldwide.Biofertilizers have a substantial impact on various metabolic processes,including increased photo-synthesis,endogenous hormone levels,ion absorption,nucleic acid synthesis,and protein synthesis.These factors collectively contribute to the growth and development of plants.Therefore,this study aims to investigate how three biofertilizers(Algae extract,CMS as a by-product of yeast,and Metalosate multi minerals as amino acids)can enhance both the quantity and quality of flax seed yield under sandy soil conditions.Two field experiments were conducted at the Experimental Station of National Research Centre in Nubaria District,Behira Governorate,Egypt during two seasons(2021/2022)using a randomized complete block design(RCBD).The results revealed significant differences among all tested biofertilizers in terms of various characteristics studied in flax.Foliar application of algae extract at a rate of 1.50 mL/L resulted in an increase in seed yield(ton/ha)by 26.69%&19.89%,straw yield(ton/ha)by 8.08%&17.12%,and oil yield(kg/ha)by 47.72%&33.69%compared to the control group during both seasons respectively.Foliar applications of algae extract at a rate of 1.50 mL/L along with CMS at a rate of 5 m L/L and amino acids at a rate of 1.50 mL/L demonstrated significantly higher macronutrient contents(N,P,K),micronutrient contents(Fe,Zn,Mn),seed oil content,and protein content in flax seeds during both seasons.The highest values for seed oil content and protein content%were obtained through foliar application of amino acids at a rate of 1.50 mL/L.It can be concluded that foliar sprays with these bio-fertilizers effectively improved flax performance by increasing seed straw and oil yields,nutrients oil,protein and fatty acids seeds contents.
文摘Okra (Abelmoschus esculentus L.) is an herbaceous plant of the Malvaceae family. In Côte d’Ivoire, okra production is estimated to be over 193,000 tons. This low production is largely due to poor soils and hardly covers the needs of the population. To remedy this, growers systematically use mineral fertilizers. However, these fertilizers pollute the environment. To find an alternative to chemical fertilization and increase production, the effect of biofertilizers (Spaawet, Retone, Super Gro) compared with NPK mineral fertilizer was evaluated on Divo, Teriman, and Djonan F1 cultivars. The trial was set up in a factorial block design with three replications. Plant height, number of functional leaves, and crown diameter were assessed at 60 days after sowing (DAS). The time to 50% flowering, production time, and fruit yield were calculated. The results showed that the biofertilizer Retone induced the highest heights and number of functional leaves, with averages of 61.89 cm and 29.88 leaves, respectively. The diameter at the crown (17.77 mm) was highest with the NPK mineral fertilizer, and the shortest 50% flowering time, with an average of 47.61 days, was also obtained with the biofertilizer Retone. The NPK mineral fertilizer produced the longest production time, with an average of 35.25 days. The highest yields were obtained using Retone (11.07 t/ha) and NPK (9.52 t/ha) fertilizers. The “Divo<sub>*</sub>Retone” interaction produced the highest yield with an average of 12.19 t/ha. The biofertilizer Retone could therefore be used as an alternative fertilizer to chemical fertilization in okra crops, given its effect on the parameters assessed.
文摘[Objectives]The paper was to explore the effect of K fertilizer on the absorption of mineral elements in greenhouse-grown strawberry fruits.[Methods]A systematic investigation was conducted on the effects of K fertilizer dosage levels on the absorption of mineral elements in Fengxiang strawberries,an excellent variety suitable for cultivation in Anhui Province.The investigation was carried out under medium N and P conditions in a greenhouse.[Results]The N content of strawberry fruits increased as the K_(2)O dosage increased within the range of 0-250 kg/hm^(2).Similarly,the P content of strawberry fruits increased gradually with the increase of K_(2)O dosage within the range of 0-125 kg/hm^(2).[Conclusions]This study presents a basis for enhancing the absorption of mineral elements in strawberry fruit by applying K appropriately.
基金Supported by National Key Research and Development Program of China(2017FYD0101406)Zhoukou Comprehensive Test Station of Henan Provincial Corn Industry Technology System(HARS-22-02-Z5)。
文摘[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area.
基金provided by the National Key Research and Development Program of China(2018YFD0300904)Anhui Natural Science Foundation(2008085QC119)Key Fund Project of Anhui Department of Education(KJ2019A0176).
文摘One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and from PI to heading(HS)is expected to synchronize the double-peak N demand of rice.However,its effects on the yield and N use efficiency(NUE)of labor-intensive double-cropping rice were unknown.Two targeted CRU(CRU_(A)and CRU_(B))were compounded in five ratios(CRU_(A):CRU_(B)=10:0,7:3,5:5,3:7,and 0:10)to form five mixed fertilizers(BBFs):BBF1-5.A field experiment was performed to investigate the characteristics of N supply in early and late seasons under different BBFs and their effects on N uptake,yield,and ammonia volatilization(AV)loss from paddy fields of double-cropping rice.Conventional high-yield fertilization(CK,three split applications of urea)and zero-N treatments were established as controls.The N supply dropped significantly with the increased compound ratio of CRU_(B)during the period from TS to PI,but increased during the period from PI to HS.With the exception of the period from TS to PI in the late rice season,the N uptake of early and late rice maintained close synchronicity with the N supply of BBFs during the double-peak periods.Excessive N supply(BBF1 and BBF2)in the late rice season during the period from TS to PI increased N loss by AV.The effect of BBF on grain yield increase varied widely between seasons,irrespective of year.Among the BBFs,the BBF2 treatment of early rice not only stabilized the spikelets per panicle but also ensured a high number of effective panicles by promoting N uptake during the period from TS to PI and a high grain-filling percentage by appropriately reducing the N supply at the later PI stage,resulting in the highest rice yield.While stabilizing the effective panicle number,the BBF4 treatment of late rice increased the number of spikelets per panicle by promoting N uptake during the period from PI to HS,resulting in the highest rice yield.The two-year average yield and apparent N recovery efficiency of the BBF2 treatment during the early rice season were 9.6 t ha 1 and 45.3%,while those of late rice in BBF4 were 9.6 t ha 1 and 43.0%,respectively.The yield and NUE indexes of BBF2 in early rice and BBF4 in late rice showed no significant difference from those of CK.The AVs of BBF2 during the early rice season and of BBF4 during the late rice season were 50.0%and 76.8%lower,respectively,than those of CK.BBF2 and BBF4 could effectively replace conventional urea split fertilization in early and late rice seasons,ensuring rice yield and NUE and reducing AV loss in paddy fields.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金supported by the National Key Research and Development Program of China(2020YFD1000805-03)National Natural Science Foundation of China(31671631)。
文摘Nitrogen(N)fertilization affects grain quality in common buckwheat(Fagopyrum esculentum Moench).But the effects of N fertilizer on various buckwheat protein parameters are not fully understood.This study aimed to investigate the synthesis,accumulation,and quality of buckwheat protein under four N application rates in the Loess Plateau,China.Optimal N application(180 kg N ha-1)improved yield,agronomic traits,and N transport and increased protein yield and protein component accumulation.Prolamin and glutelin accumulation first increased and then decreased with increasing N application.The relationships between the contents of protein components and the amount of applied N generally followed quadratic functions.Nitrate reductase and glutamine synthetase activities first increased and then decreased with increasing N levels.Optimal N fertilizer increased the waterholding capacity and thermal stability of buckwheat protein and reduced its emulsification capacity,but negligibly changed its oil-absorption capacity.Hydrophobic amino acids and glutelin content were the main factors affecting protein quality.
基金This study was supported by the National Natural Science Foundation of China[Grant No.U20A20114]the soil N losses in the greenhouse field in the Yellow River Irrigation as affected by the annual changes of groundwater depth[Grant No.41361062].
文摘The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution.This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status.A series of field experiments were conducted for six years with treatments as:farmer accustomed to fertilization used as control(CON),fertilizer decrement(KF),fertilizer decrement+watersaving irrigation(BMP1);combined application of organic and inorganic fertilizer+water-saving irrigation(BMP2),and combined application of controlled-release fertilizer(BMP3).A significant improvement was observed in soil organic matter(14.9%),nitrate nitrogen(106.7%),total phosphorus(23.9%),available phosphorus(26.2%),straw yield(44.8%),and grain yield(54.7%)with BMP2 treatment as compared to CON.The study concludes that integrating chemical and organic fertilizers with water-saving irrigation(BMP2)is a good approach to increasing corn productivity,ensuring water safety and improving soil health.The limitations of the current study include the identification of fertilizer type and its optimum dose,irrigation water type,and geographical position.
基金This work was supported by National Key R&D Program of China(2022YFB3605103)the National Natural Science Foundation of China(62204241,U22A2084,62121005,and 61827813)+3 种基金the Natural Science Foundation of Jilin Province(20230101345JC,20230101360JC,and 20230101107JC)the Youth Innovation Promotion Association of CAS(2023223)the Young Elite Scientist Sponsorship Program By CAST(YESS20200182)the CAS Talents Program(E30122E4M0).
文摘240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.
基金partially supported by the US National Science Foundation(1903722,1243232)。
文摘Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.
基金Peanut Innovation Team Project of Shandong Modern Agricultural Industrial Technology System(SDAIT-05-022).
文摘[Objectives]To study the impacts and demonstration effects of long-acting slow-release fertilizer application on economic yield of peanut.[Methods]The 25,30,35,40,45,50 kg of long-acting slow-release fertilizers were applied to 667 m 2 of peanuts,and different amounts of urea were applied together.[Results]Applying 40 kg of long-acting slow-release fertilizer and 10.45 kg of urea had the best effect.Compared with the application of ordinary compound fertilizers,the plants did not age prematurely,the leaf diseases were mild,the stems and leaves remained dark green when harvested,and the stems and leaves had a longer functional period.Bearing shoots increased by 1.7,single-plant full pods increased by 2.4,double-seed peanuts increased by 3.2,empty pods decreased by 0.5,and single-seed peanuts decreased by 0.7.The experimental demonstration results show that the spring-sowed peanuts had an average yield increase of 29.0-67.2 kg/667 m 2,and the yield increase rate was 7.35%-16.89%,and the difference was extremely significant.[Conclusions]In the high-yield cultivation of peanuts,the application of long-acting slow-release fertilizer can be promoted to improve peanut production.
基金the National Natural Science Foundation of China(51779161 and 52279041)the National Funds for Distinguished Young Scientists of China(51922072)+1 种基金the Sichuan Science and Technology Program,China(2023YFN0024 and 2023NZZJ0015)the Key Development Project of the Chengdu Science and Technology Plan,China(2022-YF05-01008-SN)。
文摘For a long time,seasonal drought occurs frequently in Southwest China,and the management of water and fertilizer in kiwifruit orchards has no quantitative standards,which seriously affects the yield and quality of kiwifruit.Therefore,the effects of water and fertilizer deficit regulation with drip irrigation(WFDRDI)on the quality of kiwifruit at different growth stages were explored to achieve water and fertilizer saving,and green and efficient production of kiwifruit.We select‘Jin Yan'kiwifruit and set two water deficit levels(W_(D20%)and W_(D40%))and three fertilizer deficit levels(F_(D15%),F_(D30%)and F_(D45%))at bud burst to leafing stage(stageⅠ),flowering to fruit set stage(stageⅡ),fruit expansion stage(stageⅢ)and fruit maturation stage(stageⅣ),respectively,with a full irrigation and fertilization as the control treatment(CK)in 2017and 2018.Results showed that the WFDRDI at stageⅡandⅢhad significant effect on fruit physical quality of kiwifruit,specifically,theⅢ-WD40%F_(D30%)andⅢ-W_(D20%)F_(D45%)treatments significantly increased fruit firmness by 13.62 and 15.59%(P<0.05),respectively;theⅡ-W_(D40%)F_(D15%)andⅢ-W_(D40%)F_(D15%)treatments significantly increased dry matter by 8.19 and 6.47%(P<0.05),respectively;theⅢ-W_(D20%)F_(D15%)treatment significantly increased single fruit weight and fruit volume by 9.33 and 12.65%(P<0.05),respectively;theⅡ-W_(D20%)F_(D15%)treatment significantly increased fruit water content by 1.99%(P<0.05).The WFDRDI had an obvious effect on fruit chemical quality of kiwifruit.TheⅢ-W_(D20%)F_(D45%),Ⅳ-W_(D40%)F_(D15%)andⅣ-W_(D20%)F_(D30%)treatments significantly increased vitamin C(Vc)content by 69.96,36.96 and 34.31%(P<0.05),respectively;theⅢ-W_(D40%)F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments significantly increased total soluble solid(TSS)content by 3.79 and 17.05%(P<0.05),respectively,and significantly increased soluble sugar content by 28.61 and 34.79%(P<0.05),respectively;the contents of fructose,glucose and sucrose also had a significantly increasing trend,which was increased significantly by 5.58–19.63%,40.55–60.36%and 54.03–54.92%in theⅢ-WD40%F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments(P<0.05),respectively;sugar–acid ratio was increased significantly in theⅣ-W_(D40%)F_(D15%)treatment by 64.65%(P<0.05).The degree and duration of water and fertilizer deficit had a comprehensive effect on fruit quality of kiwifruit.The WFDRDI at stageⅡandⅢcontribute to improving fruit physical quality,and the threshold of water and fertilizer deficit were 20 and 15%,respectively;stageⅢandⅣare the critical periods for improving fruit chemical quality by water and fertilizer coupling effect,and the threshold of water and fertilizer deficit were 40 and 15%,respectively.Therefore,aiming at precise water and fertilizer saving,theⅠ-W_(D20%)F_(D30%),Ⅱ-W_(D40%)F_(D15%),Ⅲ-W_(D40%)F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments under WFDRDI during the whole growth period of kiwifruit were the best mode to improve quality and production of kiwifruit.
基金supported by the National Natural Science Foundation of China(32060430 and 31971840)the Research Initiation Fund of Hainan University,China(KYQD(ZR)19104)。
文摘Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.
基金financially supported by the National Key Research and Development Program of China(2021YFD2100904)the National Natural Science Foundation of China(31871729,32172147)+2 种基金the Modern Agriculture key Project of Jiangsu Province of China(BE2022317)the Modern Agricultural Industrial Technology System Construction Project of Jiangsu Province of China(JATS[2021]522)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.
基金support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”“Innovation Research Team of High-Level Local Universities in Shanghai”support from the National Natural Science Foundation of China (22209103)
文摘Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.
基金The authors acknowledge the financial support received from the National Natural Science Foundation of China(72061147002).
文摘China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.
基金Supported by Key R&D Program of the Ministry of Science and Technology of China(2017YFC0505102-4)。
文摘[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County.
基金The financial support from the National Natural Science Foun-dation of China(Grant Nos.52074299 and 41941018)the Fundamental Research Funds for the Central Universities of China(Grant No.2023JCCXSB02)are gratefully acknowledged.
文摘To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation.