Hepatocellular carcinoma(HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor...Hepatocellular carcinoma(HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called "liquid biopsy" is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma.展开更多
Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer(PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers ...Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer(PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis. In the blood of patients with cancer, circulating tumor cells(CTCs) and cell-free nucleic acids(cf NAs), such as DNA, m RNA, and noncoding RNA have been recognized. In the recent years, their presence in the blood has encouraged researchers to investigate their potential use as novel blood biomarkers, and numerous studies have demonstrated their potential clinical utility as a biomarker for certain types of cancer. This concept, called "liquid biopsy" has been focused on as a less invasive, alternative approach to cancer tissue biopsy for obtaining genetic and epigenetic aberrations that contribute to oncogenesis and cancer progression. In this article, we review the available literature on CTCs and cfN As in patients with cancer, particularly focusing on PCa, and discuss future perspectives in this field.展开更多
To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and...To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and analyses of these changes have been increasingly utilized for diagnostic, prognostic and therapeutic purposes in malignant diseases including gastric cancer (GC). Surgical and/or biopsy specimens are generally used to understand the tumor-associated alterations; however, those approaches cannot always be performed because of their invasive characteristics and may fail to reflect current tumor dynamics and drug sensitivities, which may change during the therapeutic process. Therefore, the importance of developing a non-invasive biomarker with the ability to monitor real-time tumor dynamics should be emphasized. This concept, so called “liquid biopsy”, would provide an ideal therapeutic strategy for an individual cancer patient and would facilitate the development of “tailor-made” cancer management programs. In the blood of cancer patients, the presence and potent utilities of circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) such as DNA, mRNA and microRNA have been recognized, and their clinical relevance is attracting considerable attention. In this review, we discuss recent developments in this research field as well as the relevance and future perspectives of CTCs and cfNAs in cancer patients, especially focusing on GC.展开更多
Early diagnosis and prognosis of ischemic stroke remains a critical challenge in clinical settings.A blood biomarker can be a promising quantitative tool to represent the clinical manifestations in ischemic stroke.Cel...Early diagnosis and prognosis of ischemic stroke remains a critical challenge in clinical settings.A blood biomarker can be a promising quantitative tool to represent the clinical manifestations in ischemic stroke.Cell-free DNA(cfDNA)has recently turned out to be a popular circulating biomarker due to its potential relevance for diagnostic applications in a variety of disorders.Despite bright outlook of cfDNA in clinical applications,very less is known about its origin,composition,or function.Several recent studies have identified cell-derived mitochondrial components including mitochondrial DNA(mtDNA)in the extracellular spaces including blood and cerebrospinal fluid.However,the time course of alterations in plasma mtDNA concentrations in patients after an ischemic stroke is poorly understood.DNA is thought to be freed into the plasma shortly after the commencement of an ischemic stroke and then gradually decreased.However,the importance of cell-free mtDNA(cf-mtDNA)in ischemic stroke is still unknown.This review summarizes about the utility of biomarkers which has been standardized in clinical settings and role of cfDNA including cfmtDNA as a non-invasive potential biomarker of ischemic stroke.展开更多
Excessive cell-free DNA(cfDNA)released by damaged or apoptotic cells can cause inflammation,impacting the progression of rheumatoid arthritis(RA).cfDNA scavengers,such as cationic nanoparticles(NPs),have been demonstr...Excessive cell-free DNA(cfDNA)released by damaged or apoptotic cells can cause inflammation,impacting the progression of rheumatoid arthritis(RA).cfDNA scavengers,such as cationic nanoparticles(NPs),have been demonstrated as an efficient strategy for treating RA.However,most scavengers are limited by unfavorable biocompatibility and poor scavenging efficacy.Herein,by exploiting the favorable biocompatibility,biodegradability and bioadhesion of polydopamine(P),we modified P with dimethylamino groups to form altered charged DPs to bind negatively charged cfDNA for RA therapy.Results showed that DPs endowed with superior binding affinity of cfDNA and little cytotoxicity,which effectively inhibited lipopolysaccharide(LPS)stimulated inflammation in vitro,resulting in the relief of joint swelling,synovial hyperplasia and cartilage destruction in RA rats.Significantly,DPs with higher DS of bis dimethylamino group exhibited higher positive charge density and stronger cfDNA binding affinity,leading to excellent RA therapeutic effect among all of the treated groups,which was even close to normal rats.These finding provides a novel strategy for the treatment of cfDNA-associated diseases.展开更多
Detection of circulating tumor DNAs(ct DNAs) in cancer patients is an important component of cancer precision medicine ct DNAs. Compared to the traditional physical and biochemical methods, blood-based ct DNA detectio...Detection of circulating tumor DNAs(ct DNAs) in cancer patients is an important component of cancer precision medicine ct DNAs. Compared to the traditional physical and biochemical methods, blood-based ct DNA detection offers a non-invasive and easily accessible way for cancer diagnosis, prognostic determination, and guidance for treatment. While studies on this topic are currently underway, clinical translation of ct DNA detection in various types of cancers has been attracting much attention, due to the great potential of ct DNA as blood-based biomarkers for early diagnosis and treatment of cancers. ct DNAs are detected and tracked primarily based on tumorrelated genetic and epigenetic alterations. In this article, we reviewed the available studies on ct DNA detection and described the representative methods. We also discussed the current understanding of ct DNAs in cancer patients and their availability as potential biomarkers for clinical purposes. Considering the progress made and challenges involved in accurate detection of specific cell-free nucleic acids, ct DNAs hold promise to serve as biomarkers for cancer patients, and further validation is needed prior to their broad clinical use.展开更多
文摘Hepatocellular carcinoma(HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called "liquid biopsy" is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma.
文摘Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer(PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis. In the blood of patients with cancer, circulating tumor cells(CTCs) and cell-free nucleic acids(cf NAs), such as DNA, m RNA, and noncoding RNA have been recognized. In the recent years, their presence in the blood has encouraged researchers to investigate their potential use as novel blood biomarkers, and numerous studies have demonstrated their potential clinical utility as a biomarker for certain types of cancer. This concept, called "liquid biopsy" has been focused on as a less invasive, alternative approach to cancer tissue biopsy for obtaining genetic and epigenetic aberrations that contribute to oncogenesis and cancer progression. In this article, we review the available literature on CTCs and cfN As in patients with cancer, particularly focusing on PCa, and discuss future perspectives in this field.
文摘To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and analyses of these changes have been increasingly utilized for diagnostic, prognostic and therapeutic purposes in malignant diseases including gastric cancer (GC). Surgical and/or biopsy specimens are generally used to understand the tumor-associated alterations; however, those approaches cannot always be performed because of their invasive characteristics and may fail to reflect current tumor dynamics and drug sensitivities, which may change during the therapeutic process. Therefore, the importance of developing a non-invasive biomarker with the ability to monitor real-time tumor dynamics should be emphasized. This concept, so called “liquid biopsy”, would provide an ideal therapeutic strategy for an individual cancer patient and would facilitate the development of “tailor-made” cancer management programs. In the blood of cancer patients, the presence and potent utilities of circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) such as DNA, mRNA and microRNA have been recognized, and their clinical relevance is attracting considerable attention. In this review, we discuss recent developments in this research field as well as the relevance and future perspectives of CTCs and cfNAs in cancer patients, especially focusing on GC.
文摘Early diagnosis and prognosis of ischemic stroke remains a critical challenge in clinical settings.A blood biomarker can be a promising quantitative tool to represent the clinical manifestations in ischemic stroke.Cell-free DNA(cfDNA)has recently turned out to be a popular circulating biomarker due to its potential relevance for diagnostic applications in a variety of disorders.Despite bright outlook of cfDNA in clinical applications,very less is known about its origin,composition,or function.Several recent studies have identified cell-derived mitochondrial components including mitochondrial DNA(mtDNA)in the extracellular spaces including blood and cerebrospinal fluid.However,the time course of alterations in plasma mtDNA concentrations in patients after an ischemic stroke is poorly understood.DNA is thought to be freed into the plasma shortly after the commencement of an ischemic stroke and then gradually decreased.However,the importance of cell-free mtDNA(cf-mtDNA)in ischemic stroke is still unknown.This review summarizes about the utility of biomarkers which has been standardized in clinical settings and role of cfDNA including cfmtDNA as a non-invasive potential biomarker of ischemic stroke.
基金the National Natural Science Foundation of China(Grant No.82160430,81972120 and 82160188)the Natural Science Foundation of Guangxi(Grant No.2020GXNSFAA159134)the Guangxi Science and Technology Base and Talent Special Project(Grant No.GuikeAD21075002 and GuikeAD19254003).
文摘Excessive cell-free DNA(cfDNA)released by damaged or apoptotic cells can cause inflammation,impacting the progression of rheumatoid arthritis(RA).cfDNA scavengers,such as cationic nanoparticles(NPs),have been demonstrated as an efficient strategy for treating RA.However,most scavengers are limited by unfavorable biocompatibility and poor scavenging efficacy.Herein,by exploiting the favorable biocompatibility,biodegradability and bioadhesion of polydopamine(P),we modified P with dimethylamino groups to form altered charged DPs to bind negatively charged cfDNA for RA therapy.Results showed that DPs endowed with superior binding affinity of cfDNA and little cytotoxicity,which effectively inhibited lipopolysaccharide(LPS)stimulated inflammation in vitro,resulting in the relief of joint swelling,synovial hyperplasia and cartilage destruction in RA rats.Significantly,DPs with higher DS of bis dimethylamino group exhibited higher positive charge density and stronger cfDNA binding affinity,leading to excellent RA therapeutic effect among all of the treated groups,which was even close to normal rats.These finding provides a novel strategy for the treatment of cfDNA-associated diseases.
基金supported by the Precision Medicine Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-L14)the National Basic Research Program of China (973 Program+2 种基金 Grant Nos. 2012CB518302 and 2013CB911001)the National Natural Science Foundation of China (Grant Nos. 31540033 and 91019024)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA01040407)
文摘Detection of circulating tumor DNAs(ct DNAs) in cancer patients is an important component of cancer precision medicine ct DNAs. Compared to the traditional physical and biochemical methods, blood-based ct DNA detection offers a non-invasive and easily accessible way for cancer diagnosis, prognostic determination, and guidance for treatment. While studies on this topic are currently underway, clinical translation of ct DNA detection in various types of cancers has been attracting much attention, due to the great potential of ct DNA as blood-based biomarkers for early diagnosis and treatment of cancers. ct DNAs are detected and tracked primarily based on tumorrelated genetic and epigenetic alterations. In this article, we reviewed the available studies on ct DNA detection and described the representative methods. We also discussed the current understanding of ct DNAs in cancer patients and their availability as potential biomarkers for clinical purposes. Considering the progress made and challenges involved in accurate detection of specific cell-free nucleic acids, ct DNAs hold promise to serve as biomarkers for cancer patients, and further validation is needed prior to their broad clinical use.