期刊文献+
共找到40,475篇文章
< 1 2 250 >
每页显示 20 50 100
Abiotic stress treatment reveals expansin like A gene OfEXLA1 improving salt and drought tolerance of Osmanthus fragrans by responding to abscisic acid 被引量:1
1
作者 Bin Dong Qianqian Wang +7 位作者 Dan Zhou Yiguang Wang Yunfeng Miao Shiwei Zhong Qiu Fang Liyuan Yang Zhen Xiao Hongbo Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期573-585,共13页
Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental st... Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental stresses. Currently, limited information is available regarding the genetic analysis and functional identification of expansin genes in response to abiotic stress in sweet osmanthus. In this study, a total of 29 expansin genes were identified and divided into four groups by genome-wide analysis from the sweet osmanthus genome. Transcriptome and quantitative Real-time PCR analysis showed that the cell wall-localized protein expansin-like A(OfEXLA1) gene was significantly induced by salt and drought treatment. Histochemical GUS staining of transgenic Arabidopsis lines in which GUS activity was driven with the OfEXLA1 promoter, GUS activity was significantly induced by salt, drought, and exogenous abscisic acid(ABA). In yeast, we found OfEXLA1overexpression significantly improved the population of cells compared with wild-type strains after NaCl and polyethylene glycol(PEG)treatment. Additionally, OfEXLA1 overexpression not only promoted plant growth, but also improved the salt and drought tolerance in Arabidopsis. To gain insight into the role of ABA signaling in the regulation of OfEXLA1 improving abiotic tolerance in sweet osmanthus, four differentially expressed ABA Insensitive 5(ABI5)-like genes(OfABL4, OfABL5, OfABL7, and OfABL8) were identified from transcriptome, and dualluciferase(dual-LUC) and yeast one hybrid(Y1H) assay showed that OfABL4 and OfABL5 might bind to OfEXLA1 promoter to accumulate the OfEXLA1 expression by responding to ABA signaling to improve abiotic tolerance in sweet osmanthus. These results provide the information for understanding the molecular functions of expansin-like A gene and molecular breeding of sweet osmanthus in future. 展开更多
关键词 Osmanthus fragrans Abiotic tolerance EXPANSIN Abscisic acid
下载PDF
MIR1868 negatively regulates rice cold tolerance at both the seedling and booting stages 被引量:1
2
作者 Yang Shen Xiaoxi Cai +7 位作者 Yan Wang Wanhong Li Dongpeng Li Hao Wu Weifeng Dong Bowei Jia Mingzhe Sun Xiaoli Sun 《The Crop Journal》 SCIE CSCD 2024年第2期375-383,共9页
Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive s... Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive stages.This study revealed a rice-specific 24-nt miRNA,miR1868,whose accumulation was suppressed by cold stress.Knockdown of MIR1868 increased seedling survival,pollen fertility,seed setting,and grain yield under cold stress,whereas its overexpression conferred the opposite phenotype.Knockdown of MIR1868 increased reactive oxygen species(ROS)scavenging and soluble sugar content under cold stress by increasing the expression of peroxidase genes and sugar metabolism genes,and its overexpression produced the opposite effect.Thus,MIR1868 negatively regulated rice cold tolerance via ROS scavenging and sugar accumulation. 展开更多
关键词 RICE Cold tolerance MIRNA ROS scavenging Soluble sugar accumulation
下载PDF
Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance 被引量:1
3
作者 Lixue Gai Yahui Wang +5 位作者 Pan Wan Shuping Yu Yongzheng Chen Xijiang Han Ping Xu Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期128-146,共19页
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M... Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications. 展开更多
关键词 SiC/C composites Compositional engineering Hollow engineering Microwave absorption Environmental tolerance
下载PDF
A Data Intrusion Tolerance Model Based on an Improved Evolutionary Game Theory for the Energy Internet 被引量:1
4
作者 Song Deng Yiming Yuan 《Computers, Materials & Continua》 SCIE EI 2024年第6期3679-3697,共19页
Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suf... Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources. 展开更多
关键词 Energy Internet Intrusion tolerance game theory racial competition adaptive intrusion response
下载PDF
The UDP-glycosyltransferase OsUGT706D2 positively regulates cold and submergence stress tolerance in rice
5
作者 Qing Liu Lanlan Zhang +12 位作者 Shuwei Lyu Hang Yu Wenjie Huang Liqun Jiang Jing Zhang Bingrui Sun Xingxue Mao Pingli Chen Junlian Xing Wenfeng Chen Zhilan Fan Shijuan Yan Chen Li 《The Crop Journal》 SCIE CSCD 2024年第3期732-742,共11页
In a genome-wide association study,we identified a rice UDP-glycosyltransferase gene,OsUGT706D2,whose transcription was activated in response to cold and submergence stress and to exogenous abscisic acid(ABA).OsUGT706... In a genome-wide association study,we identified a rice UDP-glycosyltransferase gene,OsUGT706D2,whose transcription was activated in response to cold and submergence stress and to exogenous abscisic acid(ABA).OsUGT706D2 positively regulated the biosynthesis of tricin-4’-O-(syringyl alcohol)ether-7-O-glucoside at both the transcriptional and metabolic levels.OsUGT706D2 mediated cold and submergence tolerance by modulating the expression of stress-responsive genes as well as the abscisic acid(ABA)signaling pathway.Gain of function of OsUGT706D2 increased cold and submergence tolerance and loss of function of OsUGT706D2 reduced cold tolerance.ABA positively regulated OsUGT706D2-mediated cold tolerance but reduced submergence tolerance.These findings suggest the potential use of OsUGT706D2 for improving abiotic stress tolerance in rice. 展开更多
关键词 UDP-glycosyltransferase RICE Cold tolerance Submergence tolerance ABA
下载PDF
Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus
6
作者 Jianjun Wang Yanan Shao +4 位作者 Xin Yang Chi Zhang Yuan Guo Zijin Liu Mingxun Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1864-1878,共15页
Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid bi... Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid biosynthesis as well as responses to biotic and abiotic stresses.However,the function of SAD orthologs from L.usitatissimum has not been assessed.Here,we found that two LuSAD genes,LuSAD1 and LuSAD2,are present in the genome of L.usitatissimum cultivar‘Longya 10’.Heterogeneous expression of either LuSAD1 or LuSAD2 in Arabidopsis thaliana resulted in higher contents of total fatty acids and oleic acid in the seeds.Interestingly,ectopic expression of LuSAD2 in A.thaliana caused altered plant architecture.Similarly,the overexpression of either LuSAD1 or LuSAD2 in Brassica napus also resulted in increased contents of total fatty acids and oleic acid in the seeds.Furthermore,we demonstrated that either LuSAD1 or LuSAD2 enhances seedling resistance to cold and drought stresses by improving antioxidant enzyme activity and nonenzymatic antioxidant levels,as well as reducing membrane damage.These findings not only broaden our knowledge of the LuSAD functions in plants,but also offer promising targets for improving the quantity and quality of oil,and the abiotic stress tolerance of oil-producing crops,through molecular manipulation. 展开更多
关键词 LuSAD oleic acid cold tolerance drought tolerance Linum usitatissimum Brassica napus
下载PDF
Cardiac Tolerance of Hydroalcoholic Extract of Bark of Terminalia mantaly H. Perrier (HAEBTM) in Wistar Rats
7
作者 Irié Lou Bohila Emilie Kamo Kouakou Serge Kouassi +3 位作者 Virginie Atto Allico Joseph Djaman Jean David N’guessan Mireille Dosso 《American Journal of Molecular Biology》 CAS 2024年第3期126-137,共12页
Terminalia mantaly H. Perrier is a plant used in traditional medicine for the treatment of various pathologies. However, Terminalia mantaly H. Perrier could present potential health effects on patients. In order to de... Terminalia mantaly H. Perrier is a plant used in traditional medicine for the treatment of various pathologies. However, Terminalia mantaly H. Perrier could present potential health effects on patients. In order to determine the possible cardiotoxic effects of the hydro-alcoholic extract of the bark of Terminalia mantaly H. Perrier, (HAEBTM) forty (40) rats distributed randomly into 4 groups, including 10 animals per group (5 males and 5 females) were used. Animals in group 1 received distilled water and were used as a control group. On the other hand, groups 2, 3, 4 received oral administration a volume of the hydroalcoholic extract of Terminalia mantaly H. Perrier corresponding to 1 mL/100g of body weight at 150 mg/kg, 300 mg/kg, 600 mg/kg, respectively. The extract was administered daily at the same time for 28 days and serum was collected once a week to evaluate cardiac biochemical markers using spectrophotometric methods using a Cobas C311 HITACHI biochemistry system. After one month of study, all rats were euthanized by overdose of ether, and the hearts of the rats were removed for gross morphological and histopathological analysis. Results were analysed using variance analysis (ANOVA) to compare outcomes as a function of doses administered and treatment times. The biochemical parameters ALT, LDH, CPK, CPKMB showed no significant change (p Terminalia mantaly showed no lesions, edema and necrosis. These results suggest that the hydroalcoholic extract of Terminalia mantaly did not interfere with the functioning or alter the integrity of the heart. 展开更多
关键词 Terminalia mantaly Bio Cardiac tolerance Biochemical Markers HISTOPATHOLOGY
下载PDF
Leaf Morphology Genes SRL1 and RENL1 Co-Regulate Cellulose Synthesis and Affect Rice Drought Tolerance
8
作者 LIU Dan ZHAO Huibo +18 位作者 WANG Zi’an XU Jing LIU Yiting WANG Jiajia CHEN Minmin LIU Xiong ZHANG Zhihai CEN Jiangsu ZHU Li HU Jiang REN Deyong GAO Zhenyu DONG Guojun ZHANG Qiang SHEN Lan LI Qing QIAN Qian HU Songping ZHANG Guangheng 《Rice science》 SCIE CSCD 2024年第1期103-117,I0020-I0022,共18页
The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between... The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between the morphological development of leaves and adaptation to drought environment.In this study,a drought-sensitive,roll-enhanced,and narrow-leaf mutant(renl1)was induced from a semi-rolled leaf mutant(srl1)by ethyl methane sulfonate(EMS),which was obtained from Nipponbare(NPB)through EMS.Map-based cloning and functional validation showed that RENL1 encodes a cellulose synthase,allelic to NRL1/OsCLSD4.The RENL1 mutation resulted in reduced vascular bundles,vesicular cells,cellulose,and hemicellulose contents in cell walls,diminishing the water-holding capacity of leaves.In addition,the root system of the renl1 mutant was poorly developed and its ability to scavenge reactive oxygen species(ROS)was decreased,leading to an increase in ROS after drought stress.Meanwhile,genetic results showed that RENL1 and SRL1 synergistically regulated cell wall components.Our results revealed a theoretical basis for further elucidating the molecular regulation mechanism of cellulose on rice drought tolerance,and provided a new genetic resource for enhancing the synergistic regulation network of plant type and stress resistance,thereby realizing simultaneous improvement of multiple traits in rice. 展开更多
关键词 CELLULOSE cell wall drought tolerance leaf morphology RICE
下载PDF
Zinc finger protein ZFP36 and pyruvate dehydrogenase kinase PDK1 function in ABA-mediated aluminum tolerance in rice
9
作者 Nana Su Yanning Gong +6 位作者 Xin Hou Xing Liu Sergey Shabala Vadim Demidchik Min Yu Mingyi Jiang Liping Huang 《The Crop Journal》 SCIE CSCD 2024年第5期1483-1495,共13页
Aluminum(Al)toxicity poses a significant constraint on field crop yields in acid soils.Zinc finger protein36(ZFP36)is well-documented for its pivotal role in enhancing tolerance to both drought and oxidative stress in... Aluminum(Al)toxicity poses a significant constraint on field crop yields in acid soils.Zinc finger protein36(ZFP36)is well-documented for its pivotal role in enhancing tolerance to both drought and oxidative stress in rice.This study unveils a novel function of ZFP36 modulated by abscisic acid(ABA)-dependent mechanisms,specifically aimed at alleviating Al toxicity in rice.Under Al stress,the expression of ZFP36significantly increased through an ABA-dependent pathway.Knocking down ZFP36 heightened Al sensitivity,while overexpressing ZFP36 conferred increased resistance to Al stress.Additionally,our investigations revealed a physical interaction between ZFP36 and pyruvate dehydrogenase kinase 1 in rice(OsPDK1).Biochemical assays further elucidated that OsPDK1 phosphorylates ZFP36 at the amino acid site 73–161.Subsequent experiments demonstrated that ZFP36 positively regulates the expression of ascorbate peroxidases(OsAPX1)and OsALS1 by binding to specific elements in their upstream segments in rice.Through genetic and phenotypic analyses,we unveiled that OsPDK1 influences ABA-triggered antioxidant defense to alleviate Al toxicity by interacting with ZFP36.In summary,our study underscores that pyruvate dehydrogenase kinase 1(OsPDK1)phosphorylates ZFP36 to modulate the activities of antioxidant enzymes via an ABA-dependent pathway,influencing tolerance of rice to soil Al toxicity. 展开更多
关键词 ZFP36 OsPDK1 ABA signaling Aluminum tolerance
下载PDF
Overexpression of the peroxidase gene ZmPRX1 increases maize seedling drought tolerance by promoting root development and lignification
10
作者 Xiuzhen Zhai Xiaocui Yan +6 位作者 Tinashe Zenda Nan Wang Anyi Dong Qian Yang Yuan Zhong Yue Xing Huijun Duan 《The Crop Journal》 SCIE CSCD 2024年第3期753-765,共13页
Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the m... Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the maize peroxidase gene ZmPRX1 in drought stress tolerance was investigated by measurement of its expression in response to drought treatment both in a ZmPRX1 overexpression line and a mutant line.The higher root lignin accumulation and seedling survival rate of the overexpression line than that of the wild type or mutant support a role for ZmPRX1 in maize drought tolerance by regulating root development and lignification.Additionally,yeast one-hybrid,Dule luciferase and ChIP-qPCR assays showed that ZmPRX1 is negatively regulated by a nuclear-localized ZmWRKY86 transcription factor.The gene could potentially be used for breeding of drought-tolerant cultivars. 展开更多
关键词 Drought tolerance MAIZE ZmPRX1 Root development Lignin biosynthesis
下载PDF
PHD17 acts as a target of miR1320 to negatively control cold tolerance via JA-activated signaling in rice
11
作者 Yan Wang Yang Shen +6 位作者 Weifeng Dong Xiaoxi Cai Junkai Yang Yue Chen Bowei Jia Mingzhe Sun Xiaoli Sun 《The Crop Journal》 SCIE CSCD 2024年第5期1447-1458,共12页
Plant Homeo Domain(PHD)proteins are involved in diverse biological processes during plant growth.However,the regulation of PHD genes on rice cold stress response remains largely unknown.Here,we reported that PHD17 neg... Plant Homeo Domain(PHD)proteins are involved in diverse biological processes during plant growth.However,the regulation of PHD genes on rice cold stress response remains largely unknown.Here,we reported that PHD17 negatively regulated cold tolerance in rice seedlings as a cleavage target of miR1320.PHD17 expression was greatly induced by cold stress,and was down-regulated by miR1320 overexpression and up-regulated by miR1320 knockdown.Through 5'RACE and dual luciferase assays,we found that miR1320 targeted and cleaved the 3'UTR region of PHD17.PHD17 was a nuclearlocalized protein and acted as a transcriptional activator in yeast.PHD17 overexpression reduced cold tolerance of rice seedlings,while knockout of PHD17 increased cold tolerance,partially via the CBF cold signaling.By combining transcriptomic and physiological analyses,we demonstrated that PHD17 modulated ROS homeostasis and flavonoid accumulation under cold stress.K-means clustering analysis revealed that differentially expressed genes in PHD17 transgenic lines were significantly enriched in the jasmonic acid(JA)biosynthesis pathway,and expression of JA biosynthesis and signaling genes was verified to be affected by PHD17.Cold stress tests applied with MeJA or IBU(JA synthesis inhibitor)further suggested the involvement of PHD17 in JA-mediated cold signaling.Taken together,our results suggest that PHD17 acts downstream of miR1320 and negatively regulates cold tolerance of rice seedlings through JA-mediated signaling pathway. 展开更多
关键词 RICE Cold tolerance PHD protein miR1320 JA signaling
下载PDF
Humoral Response and Tolerance of Vaccination against SARS-CoV-2 in Adults Senegalese Patients Undergoing Hemodialysis: A Multicenter Prospective Study
12
作者 Lot Nehemie Motoula Latou Moustapha Mbow +3 位作者 Modou Ndongo Gnagna Faye Gora Lo Sidy Mohamed Seck 《Open Journal of Nephrology》 2024年第1期70-80,共11页
Introduction: Following the COVID-19 pandemic, vaccination has been proposed in several countries as the main preventive measure despite very limited data, particularly in dialysis patients. We conducted this study to... Introduction: Following the COVID-19 pandemic, vaccination has been proposed in several countries as the main preventive measure despite very limited data, particularly in dialysis patients. We conducted this study to assess the immunological response to vaccination in Senegalese hemodialysis patients. Patients and Methods: We conducted a prospective study, in two dialysis centers in Dakar from March 30<sup>th</sup> to August 30<sup>th</sup>, 2021 including patients on hemodialysis for >6 months, vaccinated against SARS-CoV-2 according to the vaccination schedule recommended by WHO. A vaccine response was considered positive when seroconversion was observed after one dose of vaccine. The clinical efficacy of immunization was defined as the absence of new COVID-19 infection in patients who received a complete vaccination. Results: Among the 81 patients included in the study, 7.4% had anti-Spike IgM antibodies before their first vaccination. Seroprevalence of IgM antibodies was 38.3% one month after the first vaccine dose (at M1) and 8.6% one month after the second dose (at M4). Anti-Spike IgG antibodies were present in 40.3% of patients before vaccination, in 90.1% at M1, and in 59.7% at M4. Among patients previously infected with SARS-CoV-2, 10.2% had IgM antibodies at M0, 31.6% at M1, and 10.5% at M4 post-vaccination. Similarly, seroprevalences of IgG antibodies in this subgroup were 31.5%, 61.3%, and 50.0% respectively at M0, M1, and M4 post-vaccination. A comparison of seroconversion rates between M0 and M4 showed significant differences only for IgG in COVID-19 naive patients. Mean duration in dialysis and the existence of previous COVID-19 infection were associated with patients’ vaccinal response after the two doses. Age, gender and the use of immunosuppressive treatment did not influence post-vaccinal antibody production. Conclusion: Vaccination against COVID-19 in Senegalese hemodialysis patients induced a low seroconversion rate but it was well tolerated. Moreover, the induced protection was neither strong nor durable, particularly in patients with longer duration in dialysis. 展开更多
关键词 SARS-Cov2 Vaccination Humoral Response tolerance HEMODIALYSIS Senegal
下载PDF
Alkali Tolerance of Concrete Internal Curing Agent Based on Sodium Carboxymethyl Starch
13
作者 陈梅花 刘荣进 +3 位作者 CHEN Ping JING Daiyan WAN Dandan FU Siyuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期82-90,共9页
Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using ... Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength. 展开更多
关键词 alkali tolerance sodium carboxymethyl starch internal curing agent compressive strength
下载PDF
Degree of shade tolerance shapes seasonality of chlorophyll, nitrogen and phosphorus levels of trees and herbs in a temperate deciduous forest
14
作者 Jiajia Zeng Fan Liu +5 位作者 Yuan Zhu Jiayi Li Ying Ruan Xiankui Quan Chuankuan Wang Xingchang Wang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期60-72,共13页
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi... Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production. 展开更多
关键词 Leaf traits Leaf nutrients Seasonal variations CHLOROPHYLL Nitrogen Phosphorus Shade tolerance Canopy layers
下载PDF
Screening and identification of salt tolerance soybean varieties and germplasms
15
作者 Limiao Chen Lihua Peng +11 位作者 Wenqi Ouyang Haowen Yao Yuxin Ye Zhihui Shan Dong Cao Shuilian Chen Zhonglu Yang Yi Huang Bei Han Aihua Sha Xinan Zhou Haifeng Chen 《Oil Crop Science》 CSCD 2024年第3期204-210,共7页
Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for... Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for soil quality improvement,necessitates the identification of salt-tolerant varieties and germplasms to effectively utilize and enhance saline-alkali land.In this study,we assessed the salt tolerance of 435 soybean varieties and germplasms during the seedling stage.Among them,Qihuang34,You2104,Hongzhudou,Pamanheidou,and Osage exhibited grade 1 salt tolerance rates surpassing other tested materials.Furthermore,Hongzhudou and Qihuang34 demonstrated higher salt tolerance during germination and emergence stages based on their elevated rates of emergence,salt tolerance index,chlorophyll content,and shoot fresh weights.Overall findings provide valuable resources for molecular breeding efforts aimed at developing salt-tolerant soybean varieties suitable for cultivation in saline-alkali soils. 展开更多
关键词 SOYBEAN VARIETIES Germplasms Salt tolerance Seedling stage Germination and emergence stage
下载PDF
The ZOS7-MYB60 module confers drought-stress tolerance in rice
16
作者 Shubo Zhou Lihong He +5 位作者 Zubair Iqbal Yi Su Jihang Huang Lijing He Mingnan Qu Langtao Xiao 《The Crop Journal》 SCIE CSCD 2024年第5期1369-1378,共10页
Shanlan upland rice is an important landrace resource with high drought stress(DS)tolerance.Despite its importance,genes responsible for yield in Shanlan upland rice have yet to be discovered.Our previous study identi... Shanlan upland rice is an important landrace resource with high drought stress(DS)tolerance.Despite its importance,genes responsible for yield in Shanlan upland rice have yet to be discovered.Our previous study identified a drought-responsive zinc finger protein,ZOS7,as highly expressed in Shanlandao upland rice.However,the function of this gene in controlling drought tolerance remains largely unexplored.In this study,we found that overexpressing ZOS7,a drought-responsive zinc finger protein,in rice increased biomass and yield under drought stress.Co-overexpressing ZOS7 and MYB60,encoding a protein with which ZOS7 interacted,intensified the yield increase.ZOS7 and MYB60 appear to form a module that confers drought tolerance by regulating stomatal density and wax biosynthesis.The ZOS7-MYB60module could be used in molecular breeding for drought tolerance in rice. 展开更多
关键词 ZOS7 EPFL9 CER1 Stomatal density Wax biosynthesis TRANSCRIPTOME Drought tolerance
下载PDF
Cellular strategies to induce immune tolerance after liver transplantation:Clinical perspectives
17
作者 Ai-Wei Zhou Jing Jin Yuan Liu 《World Journal of Gastroenterology》 SCIE CAS 2024年第13期1791-1800,共10页
Liver transplantation(LT)has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techni... Liver transplantation(LT)has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techniques and perioperative management.However,long-term side-effects of immunosuppressants,like infection,metabolic disorders and malignant tumor are gaining more attention.Immune tolerance is the status in which LT recipients no longer need to take any immunosuppressants,but the liver function and intrahepatic histology maintain normal.The approaches to achieve immune tolerance after transplantation include spontaneous,operational and induced tolerance.The first two means require no specific intervention but withdrawing immunosuppressant gradually during follow-up.No clinical factors or biomarkers so far could accurately predict who are suitable for immunosuppressant withdraw after transplantation.With the understanding to the underlying mechanisms of immune tolerance,many strategies have been developed to induce tolerance in LT recipients.Cellular strategy is one of the most promising methods for immune tolerance induction,including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory immune cells.The safety and efficacy of various cell products have been evaluated by prospective preclinical and clinical trials,while obstacles still exist before translating into clinical practice.Here,we will summarize the latest perspectives and concerns on the clinical application of cellular strategies in LT recipients. 展开更多
关键词 Cellular therapy Induced tolerance Liver transplantation Regulatory T cells Regulatory dendritic cells
下载PDF
Multidimensional evaluation of salt tolerance in groundnut genotypes through biochemical responses
18
作者 Rushita D.Parmar Vaishali G.Varsani +2 位作者 Vijay Parmar Suhas Vyas Dushyant Dudhagara 《Oil Crop Science》 CSCD 2024年第2期102-110,共9页
The manuscript explores the complex interplay between groundnut genotypes,salt tolerance and hormonal influence,shedding light on the dynamic responses of three specific groundnut genotypes,KDG-128,TG-37 A and GG-20,t... The manuscript explores the complex interplay between groundnut genotypes,salt tolerance and hormonal influence,shedding light on the dynamic responses of three specific groundnut genotypes,KDG-128,TG-37 A and GG-20,to salt treatments and gibberellic acid(GA3).The study encompasses germination,plant growth,total protein content and oil content as key parameters.Through comprehensive analysis,it identifies TG-37 A and KDG-128 as salt-tolerant genotypes,and GG-20 as salt-susceptible genotypes,which highlighting the potential for targeted breeding efforts to develop more resilient groundnut varieties.Moreover,the quantification of protein and oil content under different treatments provides vital data for optimizing nutritional profiles in groundnut cultivars.Principal Component Analysis(PCA) underscores the significance of the first principal component(PC1)in explaining the majority of variance,capturing primary trends and differences in plant length.Analysis of Variance(ANOVA) and hierarchical analysis confirm the presence of statistically significant differences in protein and oil content among the genotypes.Pearson's correlation coefficient matrix analysis reveals strong positive correlations between plant length and protein content,plant length and oil content,and a moderately positive correlation between protein content and oil content.These findings provide valuable insights into groundnut physiology,salt tolerance,and nutritional composition,with implications for future research in sustainable agriculture and crop improvement. 展开更多
关键词 GROUNDNUT Salt tolerance GENOTYPES Salt-hormone interaction Protein and oil content Statistical analysis
下载PDF
Effects of Silicon Formulations on Cold Tolerance of Rice Seedlings
19
作者 Ren Hongyu Wang Wenbo +3 位作者 Li Xuecong Li Shuai Wen Yahuan Zhang Xingwen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第2期43-52,共10页
To investigate the effects of silicon formulations on the cold tolerance of rice seedlings,Song Japonica 16(not cold tolerant)and Dongnong 427(cold tolerant)rice varieties were used as test materials and four differen... To investigate the effects of silicon formulations on the cold tolerance of rice seedlings,Song Japonica 16(not cold tolerant)and Dongnong 427(cold tolerant)rice varieties were used as test materials and four different types of silicon formulations,Si-50-G,Si-60-G,Si-T-G,and Si-E-G,were applied as foliar sprays at the seedling stage,and a control group CK(equal amount of distilled water)was set up.One week after the first silicon spray,two types of rice were subjected to low-temperature stress treatments at day/night temperatures of 12℃/10℃for 2,4,6,and 8 days.The effects of different silicon formulations on the chlorophyll,proline(Pro)and soluble sugar contents as well as superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT)activities of rice seedlings under low-temperature stress were compared to find out the effects of silicon formulations on the cold tolerance of rice seedlings.The results showed that silicon formulations could significantly increase the chlorophyll content of rice seedling leaves,with Si-50-G being the most effective,with a significant increment of 40.17%compared to the CK at 2 days of low temperature.Four silicon formulations significantly increased the proline content and soluble sugar content of rice leaves at low temperature for 4-8 days.For Song Japonica 16,the most significant increment in leaf POD activity was observed in Si-E-G treatment at 2,4 and 8 days of temperature stress,with 73.58%,20.95%and 217.24%increases compared to the CK,respectively.For 4 and 6 days of temperature stress,the most significant increase in CAT activity was observed in Si-E-G treatment,with 25.70%and 75.78%increases compared to the CK,respectively.For Dongnong 427,the Si-60-G treatment showed the highest increase in leaf SOD activity for 4 and 8 days of temperature stress,with significant increases of 58.15%and 82.76%compared to the CK,respectively,and the Si-E-G treatment showed the highest increase in leaf POD activity for 2 and 8 days of temperature stress,with significant increases of 97.75%and 245.10%compared to the CK,respectively.It showed that the spraying of silicon formulations could significantly enhance the cold tolerance of rice.This study provided a scientific basis for the rational use of silicon formulations to enhance cold tolerance in rice and had important theoretical and practical significance for ensuring sustainable high and stable rice yields in Heilongjiang Province,as well as for the development of silicon fertilizers. 展开更多
关键词 silicon formulation RICE seedling stage cold tolerance physiological indicator
下载PDF
Soaking Rice Seeds in High Concentration Salt Solution Improved Salt Tolerance at the Seedling Stage
20
作者 Jing LIN Weiwei CAO +1 位作者 Fan WANG Xianwen FANG 《Agricultural Biotechnology》 2024年第5期16-18,共3页
[Objectives]This study was conducted to enhance the salt tolerance of current rice varieties at the seedling stage and fulfill the urgent requirement for salt-tolerant rice varieties in coastal tidal flats.[Methods]Fo... [Objectives]This study was conducted to enhance the salt tolerance of current rice varieties at the seedling stage and fulfill the urgent requirement for salt-tolerant rice varieties in coastal tidal flats.[Methods]Four high-generation stable rice lines with diverse salt tolerance were employed as test materials,and four NaCl concentration gradients were established for seed soaking treatment.[Results]The seedling survival rate of line 151465 underwent significant alterations after soaking with four different salt concentrations,and the survival rate was the highest after treatment with 1.8%NaCl for 1 d,reaching 65.2%.The average survival rate of other three lines with different salt tolerance reached 62%after soaking with 1.8%NaCl for 1 d,which was significantly higher than those of the 2.2%NaCl and 0%NaCl treatments.[Conclusions]This study provides a basis for reducing the effect of abiotic stress on rice growth and development and improving the utilization rate of saline-alkali land. 展开更多
关键词 RICE Salt water Seed soaking Salt tolerance Seedling stag
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部