期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study of a new-type of steel buckling-restrained brace 被引量:2
1
作者 Jiang Tao Dai Junwu +2 位作者 Yang Yongqiang Liu Yongbin Bai Wen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第1期239-256,共18页
The rectangle core plate of all-steel buckling-restrained braces(BRBs) usually exhibit obvious local buckling, due to the lack of longitudinal restraint from the encasing tube. To eliminate the undesirable effects, a ... The rectangle core plate of all-steel buckling-restrained braces(BRBs) usually exhibit obvious local buckling, due to the lack of longitudinal restraint from the encasing tube. To eliminate the undesirable effects, a novel steel BRB is proposed. In this new-type steel BRB, two T-shaped steels are adopted as the minor restraint elements to restrain the core plate instead of infilled concrete or mortar. Meanwhile, the ingot-iron material with low yielding strength and high elongation is applied to the steel core to study the mechanical properties of steel BRBs. To validate the theoretical requirements for the width-to-thickness ratio of the steel core and the thickness of angle steel, quasi-static tests of eight specimens were conducted. The tests focused on the energy dissipation capacity and failure modes of the proposed steel BRBs. Nonlinear finite element analysis was also carried out to validate the experimental results. Both the aforementioned results imply that appropriately designed steel BRBs can meet the performance requirements for BRB components. 展开更多
关键词 steel BRB T-shaped steel Ingot-iron energy dissipation capacity failure modes nonlinear fi nite element analysis
下载PDF
Topology optimization of shear wall structures under seismic loading
2
作者 Pooya Zakian Ali Kaveh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第1期105-116,共12页
A topology optimization formulation is developed to find the stiffest structure with desirable material distribution subjected to seismic loads. Finite element models of the structures are generated and the optimality... A topology optimization formulation is developed to find the stiffest structure with desirable material distribution subjected to seismic loads. Finite element models of the structures are generated and the optimality criteria method is modified using a simple penalty approach and introducing fictitious strain energy to simultaneously consider both material volume and displacement constraints. Different types of shear walls with/without opening are investigated. Additionally, the effects of shear wall-frame interaction for single and coupled shear walls are studied. Gravity and seismic loads are applied to the shear walls so that the definitions provide a practical approach for locating the critical parts of these structures. The results suggest new viewpoints for architectural and structural engineering for placement of openings. 展开更多
关键词 topology optimization seismic loads shear wall minimum compliance multiple constraints fi nite element analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部