期刊文献+
共找到2,623篇文章
< 1 2 132 >
每页显示 20 50 100
Microwave Absorption and Mechanical Properties of Short-cutted Carbon Fiber/glass Fiber Hybrid Veil Reinforced Epoxy Composites 被引量:1
1
作者 陈威 ZHEN Bowen +4 位作者 XIE Yuxuan 贺行洋 SU Ying WANG Jun WU Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期248-254,共7页
This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)... This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)hybrid veil were prepared by papermaking technology,and composites liquid molding was employed to manufacture CFs/GFs hybrid epoxy composites.The microstructure,microwave absorbing properties and mechanical properties of the hybrid epoxy composites were studied by using SEM,vector network analyzer and universal material testing,respectively.The reflection coefficient of the composites were calculated by the measured complex permittivity and permeability in the X-band(8.2-12.4 GHz)range.The optimum microwave absorption properties can be obtained when the content of CFs in the hybrid veil is 6 wt%and the thickness of the composites is 2 mm,the minimum reflection coefficient of-31.8 dB and the effective absorption bandwidth is 2.1 GHz,which is ascribed to benefitting impedance matching characteristic and dielectric loss of the carbon fiber.Simultaneously the tensile strength and modulus can achieve 104.0 and 2.98GPa,demonstrating that the CFs/GFs hybrid epoxy composites can be a promising candidate of microwave absorbing materials with high mechanical properties. 展开更多
关键词 microwave absorption fiber reinforced composites PAPERMAKING carbon fiber
下载PDF
Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review 被引量:1
2
作者 Brett Holmberg Liang Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1474-1489,共16页
The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitiou... The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology. 展开更多
关键词 cemented paste backfill cementitious composites interfacial transition zone fiber reinforcement MULTIPHYSICS induced curing pressure
下载PDF
Ballistic impact simulation of Kevlar-129 fiber reinforced composite material 被引量:1
3
作者 张明 原梅妮 +1 位作者 向丰华 王振兴 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期286-290,共5页
The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el... The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment. 展开更多
关键词 ballistic limit finite element specific energy absorption Kevlar fiber reinforced composite material
下载PDF
Effect of Silane Coupling Agent Concentration on Interfacial Properties of Basalt Fiber Reinforced Composites
4
作者 Takao Ota 《材料科学与工程(中英文A版)》 2023年第2期36-42,共7页
The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composi... The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composites.The surface treatment of basalt fibers was carried out using an aqueous alcohol solution method.Basalt fibers were subjected to surface treatment with 3-Methacryloxypropyl trimethoxy silane at 0.5 wt.%,1 wt.%,2 wt.%,4 wt.%and 10 wt.%.The basalt monofilament tensile tests were carried out to investigate the variation in strength with the concentration of the silane coupling agent.The microdroplet test was performed to examine the effect of the concentration of the silane coupling agent on interfacial strength of basalt reinforced polymer composites.The film was formed on the surface of the basalt fiber treated silane coupling agent solution.The tensile strength of basalt fiber increased because the damaged fiber surface was repaired by the firm of silane coupling agent.The firm was effective in not only the surface protection of basalt fiber but also the improvement on the interfacial strength of fiber-matrix interface.However,the surface treatment using the high concentration silane coupling agent solution has an adverse effect on the mechanical properties of the composite materials,because of causing the degradation of the interfacial strength of the composite materials. 展开更多
关键词 Natural MINERAL fiber reinforced composites BASALT fiber SILANE coupling agent interface fiber/matrix BOND
下载PDF
Alkali and Plasma-Treated Guadua angustifolia Bamboo Fibers:A Study on Reinforcement Potential for Polymeric Matrices
5
作者 Patricia Luna Juan Lizarazo-Marriaga Alvaro Mariño 《Journal of Renewable Materials》 EI CAS 2024年第8期1399-1416,共18页
This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used s... This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing. 展开更多
关键词 Bamboo fibers Guadua angustifolia alkali treatment dry etching plasma treatment composite reinforcement
下载PDF
Mechanical Properties of Mo Fiber-reinforced Resin Mineral Composites with Different Mass Ratio of Resin and Hardener 被引量:3
6
作者 张超 张进生 +1 位作者 REN Xiuhua ZHANG Jianhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期383-390,共8页
Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanica... Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanical properties of RMC were studied, respectively. Furthermore, strain values of typical measuring points on samples of Mo fiber reinforced RMC(MFRRMC) under different loads were obtained by experiments and finite element analysis. The experimental results prove that scrap Mo fibers can improve interface bonding strength and mechanical properties of RMC better than new smooth Mo fibers because of the discharge pits randomly distributed on the surface of scrap fibers. With the decrease of hardener content, not only interface bonding strength between fiber and matrix, but also compression and flexural strength of MFRRMC increase firstly and then decrease. The properties are best while the mass ratio of resin and hardener reaches 4:1. It is indicated that finite element calculation data basically agree with experimental data by comparison of strain values on typical measuring points, which can provide an important intuitive reference for successive study on other mechanical properties of MFRRMC, validating the correctness of simulation method as well. 展开更多
关键词 MO fiber RESIN mineral composite(RMC) reinforcing effect compression STRENGTH flexural STRENGTH bonding STRENGTH
下载PDF
Main properties of ultra-high performance fiber reinforced cement composites under couple effect of load and environment
7
作者 Saly Fathy 顾春平 孙伟 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期184-189,共6页
This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to st... This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to study the UHPFRCC durability under the combined effect of loads and environments. Three types of high and ultra-high performance fiber reinforced cement composites with different strength grades (100, 150, 200 MPa) and different steel fiber volume fractions (0%, 1%, 2%, 3%) are prepared. The main properties of mechanical performance and short-term durability are studied. A preloading frame is designed to apply a four- point load external flexural stress with a stress selection ratio of 0.5 for UHPFRCC150 specimens. The results show that the growth in strength grade with a proper content of steel fiber greatly increases the strength and toughness of the HPFRCC and the UHPFRCC while decreasing the dry-shrinkage ratio. For the loaded specimens, the existence of steel fiber can reduce the negative influence of tensile stress on the Cl- penetration resistance of the UHPFRCC in addition to improving its ability to resist the freeze-thaw damage. 展开更多
关键词 ultra-high performance fiber reinforced cementitious composite couple effect of load and environment mechanical properties DURABILITY
下载PDF
Porosity Effects on Interlaminar Fracture Behavior in Carbon Fiber-Reinforced Polymer Composites 被引量:2
8
作者 Issa A. Hakim Steven L. Donaldson +1 位作者 Norbert G. Meyendorf Charles E. Browning 《Materials Sciences and Applications》 2017年第2期170-187,共18页
Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient... Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient. However, there are some types of defects such as porosity that form during the manufacturing processes of composites and alter their mechanical behavior and material properties. In his study, hand lay-up was conducted to fabricate samples of carbon fiber-reinforced polymer composites with three different vacuum levels in order to vary porosity content. Nondestructive evaluation, destructive techniques and mechanical testing were conducted. Nondestructive evaluation results showed the trend in percentages of porosity through-thickness. Serial sectioning images revealed significant details about the composite’s internal structure such as the volume, morphology and distribution of porosity. Mechanical testing results showed that porosity led to a decrease in both Mode I static interlaminar fracture toughness and Mode I cyclic strain energy release rate fatigue life. The fractographic micrographs showed that porosity content increased as the vacuum decreased, and it drew a relationship between fracture mechanisms and mechanical properties of the composite under different modes of loading as a result of the porosity effects. Finally, in order to accurately quantify porosity percentages included in the samples of different vacuum levels, a comparison was made between the parameters and percentages resulted from the nondestructive evaluation and mechanical testing and the features resulted from fractography and serial sectioning. 展开更多
关键词 CARBON fiber reinforced composite NONDESTRUCTIVE Evaluation POROSITY Fatigue Fracture Behavior SERIAL Sectioning
下载PDF
AN EXPERIMENTAL STUDY ON POST-BUCKLING BEHAVIOR OF SLENDER COLUMN WITH FIBER REINFORCED COMPOSITE MATERIAL 被引量:1
9
作者 Fan Qinshan LHYam +1 位作者 Chen Wen Chen Zhengxin 《Acta Mechanica Solida Sinica》 SCIE EI 1996年第2期184-188,共5页
Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compare... Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compared with the result of the initial post-buckling theory. Both the theoretical and experimental results reveal that the column with the initial curvature has stable post-buckling behaviors and is not sensitive to the imperfection in the form of initial curvature. The experimental results show that when the lateral buckling displacement is less than 20 percent of the column length, the experimental results agree with the results from the theory of initial post-buckling quite well, while they agree with the results from the large deflection theory in a quite large range. 展开更多
关键词 POST-BUCKLING initial curvature fiber reinforced composite materials large deflection
下载PDF
Fiber-reinforced Mechanism and Mechanical Performance of Composite Fibers Reinforced Concrete 被引量:4
10
作者 申俊敏 ZHANG Yancong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期121-130,共10页
To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evalua... To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evaluated by optical electron micrometer(OEM) and scanning electron microscope(SEM). Three kinds of fiber, such as polyacrylonitrile-based carbon fiber, basalt fiber, and glass fiber, were used in the composite fibers reinforced cement concrete. The composite fibers could form a stable structure in concrete after the liquid-phase coupling treatment, gas-liquid double-effect treatment, and inert atmosphere drying. The mechanical properties of composite fibers reinforced concrete(CFRC) were studied by universal test machine(UTM). Moreover, the effect of composite fibers on concrete was analyzed based on the toughness index and residual strength index. The results demonstrated that the composite fibers could improve the mechanical properties of concrete, while the excessive amount of composite fibers had an adverse effect on the mechanical properties of concrete. The composite fibers could significantly improve the toughness index of CFRC, and the increment rate is more than 30%. The composite fibers could form a mesh structure, which could promote the stability of concrete and guarantee the excellent mechanical properties. 展开更多
关键词 CEMENT CONCRETE composite fibers mechanical performance fiber-reinforced mechanism
下载PDF
INTERFACIAL DEBONDING OF COATED-FIBER-REINFORCED COMPOSITES UNDER TENSION-TENSION CYCLIC LOADING 被引量:7
11
作者 石志飞 周利民 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第4期347-356,共10页
A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading i... A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading is studied.The effects of strength and thickness of the coating materials on the debond stress,debond rate as well as debond length are simulated. 展开更多
关键词 interfacial debonding cyclic loading COATING fiber-reinforced composite
下载PDF
Role of matrix structure and flaw size distribution modification on deflection hardening behavior of polyvinyl alcohol fiber reinforced engineered cementitious composites(PVA-ECC) 被引量:1
12
作者 Kamile TOSUN FELEKOĞLU Eren GÖDEK 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3279-3294,共16页
The multiple cracking and deflection hardening performance of polyvinyl alcohol fiber reinforced engineered cementitious composites(PVA-ECC)under four-point flexural loading have been investigated.Matrices with differ... The multiple cracking and deflection hardening performance of polyvinyl alcohol fiber reinforced engineered cementitious composites(PVA-ECC)under four-point flexural loading have been investigated.Matrices with different binder combinations and W/B ratios(from 0.44 to 0.78)providing satisfactory PVA fiber dispersion were specially designed.Effect of pre-existing flaw size distribution modification on deflection hardening behavior was comparatively studied by adding 3 mm diameter polyethylene beads into the mixtures(6%by total volume).Natural flaw size distributions of composites without beads were determined by cross sectional analysis.The crack number and crack width distributions of specimens after flexural loading were characterized and the possible causes of changes in multiple cracking and deflection hardening behavior by flaw size distribution modification were discussed.Promising results from the view point of deflection hardening behavior were obtained from metakaolin incorporated and flaw size distribution modified PVA-ECCs prepared with W/B=0.53.The dual roles of W/B ratio and superplasticizer content on flaw size distribution,cracking potential and fiber-matrix bond behavior were evaluated.Flaw size distribution modification is found beneficial in terms of ductility improvement at an optimized W/B ratio. 展开更多
关键词 fiber reinforced cementitious composites METAKAOLIN deflection hardening multiple cracking flaw size distribution
下载PDF
Preparation of three-dimensional braided carbon fiber reinforced mullite composites from a sol with high solid content 被引量:1
13
作者 Wei ZHANG Qing-song MA +1 位作者 Ke-wei DAI Wei-guo MAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2249-2255,共7页
To prepare the three-dimensional braided carbon fiber reinforced mullite (3D C/mullite) composites, an Al2O3-SiO2 solwith a solid content of 20% (mass fraction) and an Al2O3/SiO2 mass ratio of 2:1 was selected as... To prepare the three-dimensional braided carbon fiber reinforced mullite (3D C/mullite) composites, an Al2O3-SiO2 solwith a solid content of 20% (mass fraction) and an Al2O3/SiO2 mass ratio of 2:1 was selected as the raw material. Characteristics andmullitization of the sol were analyzed throughly. It is found that the formation of mullite is basically completed at 1300℃ and thegel powders exhibit favorable sintering shrinkage. The 3D C/mullite composites without interfacial coating were fabricated throughthe route of vacuum impregnation-drying-heat treatment. Satisfied mechanical properties with a flexural strength of 241.2 MPa anda fracture toughness of 10.9 MPa·m1/2are obtained although the total porosity reaches 26.0%. Oxidation resistances of the compositesat 1200, 1400 and 1600 ℃ were investigated. Due to the further densification of matrix, the 3D C/mullite composites show tiny massloss and their mechanical properties are well retained after oxidation at 1600 ℃ for 30 min. 展开更多
关键词 carbon fiber reinforced mullite composites Al2O3-SiO2 sol mechanical properties oxidation resistance
下载PDF
Analytical modeling and vibration analysis of fiber reinforced composite hexagon honeycomb sandwich cylindrical-spherical combined shells 被引量:1
14
作者 Hui LI Bocheng DONG +4 位作者 Zhijiang GAO Jing ZHAO Haiyang ZHANG Xiangping WANG Qingkai HAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第9期1307-1322,共16页
This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analyti... This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analytical model developed,which makes good use of the advantage of the first-order shear deformation theory(FSDT),the multi-segment decomposition technique,the virtual spring technology,the Jacobi-Ritz approach,and the transfer function method.The equivalent material properties of HHC are firstly determined by the modified Gibson’s formula,and the related energy equations are derived for the HHC-FRCS-CS combined shells,from which the fundamental frequencies,the mode shapes,and the forced vibration responses are solved.The current model is verified through the discussion of convergence and comparative analysis with the associated published literature and finite element(FE)results.The effects of geometric parameters of HHC on the dynamic property of the structure are further investigated with the verified model.It reveals that the vibration suppression capability can be greatly enhanced by reducing the ratio of HHC thickness to total thickness and the ratio of wall thickness of honeycomb cell to overall radius,and by increasing the ratio of length of honeycomb cell to overall radius and honeycomb characteristic angle of HHC. 展开更多
关键词 analytical modeling cylindrical-spherical(CS)combined shell hexagonal honeycomb core(HHC) fiber reinforced composite(FRC) modified equivalent elastic modulus
下载PDF
A parallel fast multipole BEM and its applications to large-scale analysis of 3-D fiber-reinforced composites 被引量:4
15
作者 Ting Lei Zhenhan Yao Haitao Wang PengboWang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第3期225-232,共8页
In this paper, an adaptive boundary element method (BEM) is presented for solving 3-D elasticity problems. The numerical scheme is accelerated by the new version of fast multipole method (FMM) and parallelized on ... In this paper, an adaptive boundary element method (BEM) is presented for solving 3-D elasticity problems. The numerical scheme is accelerated by the new version of fast multipole method (FMM) and parallelized on distributed memory architectures. The resulting solver is applied to the study of representative volume element (RVE) for short fiberreinforced composites with complex inclusion geometry. Numerical examples performed on a 32-processor cluster show that the proposed method is both accurate and efficient, and can solve problems of large size that are challenging to existing state-of-the-art domain methods. 展开更多
关键词 Boundary element method Fast multipole method Parallel computing fiber-reinforced composites
下载PDF
STRAIN REGULARITY IN REINFORCERS OF SHORT-FIBER/ WHISKER REINFORCED COMPOSITE AND ITS APPLICATION 被引量:2
16
作者 王迺鹏 刘秋云 刘晓宇 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第4期204-210,共7页
Based on the study of strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter λ is defined as the ratio of the root-mean-square strain of reinforcers to t... Based on the study of strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter λ is defined as the ratio of the root-mean-square strain of reinforcers to the macro-linear strain along the same direction. Quantitative relation between λ and microstructure parameters of the composite is obtained. As an example of applying and verifying λ, the stress-strain curve of [AlBO]w/Al composite under tensile loading is predicted and favorably compared with experiments. By using λ, the stiffness modulus of the composite with arbitrary reinforcer orientation under any loading condition is predicted from the microstructure parameters of material. 展开更多
关键词 short-fiber/whisker reinforced composite strain distribution stiffness prediction
下载PDF
A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators 被引量:3
17
作者 J.Rouzegar A.Abbasi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第4期689-705,共17页
This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforc... This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement. 展开更多
关键词 Finite elementmethod Laminated plate Piezoelectric fiber-reinforced composite(PFRC)actuator PIEZOELECTRIC Refined plate theory Smart structures
下载PDF
INTERFACE DAMAGE ANALYSIS OF FIBER REINFORCED COMPOSITES WITH DUCTILE MATRIX 被引量:1
18
作者 周储伟 王鑫伟 +1 位作者 杨卫 方岱宁 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期119-123,共5页
A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensi... A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs. 展开更多
关键词 fiber reinforced composite micro mechanics cohesive zone model interface damage tensile strength
下载PDF
Impact Responses of the Carbon Fiber Fabric Reinforced Composites 被引量:1
19
作者 姜春兰 李明 +1 位作者 张庆明 马晓青 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期225-230,共6页
To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decay... To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed. 展开更多
关键词 carbon fiber reinforced plastics (CFRP) composite IMPACT Lagrange analysis
下载PDF
Fatigue tests of composite beam by steel fiber reinforced self-stressing concrete in the hogging bending
20
作者 胡铁明 黄承逵 +1 位作者 梁振宇 陈小锋 《Journal of Shanghai University(English Edition)》 CAS 2010年第6期430-436,共7页
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ... Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone. 展开更多
关键词 steel fiber reinforced self-stressing concrete (SFRSC) composite beam hogging bending FATIGUE
下载PDF
上一页 1 2 132 下一页 到第
使用帮助 返回顶部