Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan...Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.展开更多
Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelec...Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelectric composites,and show superior properties to monolithic piezoelectric wafer due to their distinctive structures.Numerous work has focused on the performance prediction of the composites by evaluation of structural parameters and properties of the constituent materials with analytical and numerical methods.Various applications have been explored for the piezoelectric fiber composites,including vibration and noise control,health monitoring,morphing of structures and energy harvesting,in which the composites play key role and demonstrate the necessity for further development.展开更多
A data gathering system is designed for the interferometric fiber optic gyroscope (IFOG) of land strapdown inertial system. IFOG is tested and the testing curve is given. The test data of IFOG are analyzed with Allan ...A data gathering system is designed for the interferometric fiber optic gyroscope (IFOG) of land strapdown inertial system. IFOG is tested and the testing curve is given. The test data of IFOG are analyzed with Allan variance method and each error coefficient is identified. Furthermore, a random drift error model for IFOG is built by the method of time series analysis. The conclusion provides supports for improving IFOG design and compensating for errors of IFOG in practice.展开更多
Crop performance is determined by the combined effects of the genotype of the crop and the environmental conditions of the production system. This study was undertaken to develop a dynamic model for simulating environ...Crop performance is determined by the combined effects of the genotype of the crop and the environmental conditions of the production system. This study was undertaken to develop a dynamic model for simulating environmental (temperature and solar radiation) and N supply effects on fiber fineness, maturity and micronaire. Three different experiments involving genotypes, sowing dates, and N fertilization rates were conducted to support model development and model evaluation. The growth and development duration of fiber fineness, maturity, and micronaire were scaled by using physiological development time of secondary wall synthesis (PDT SWSP ), which was determined based on the constant ratio of SWSP/ BMP. PTP (product of relative thermal effectiveness (RTE) and photosynthetically active radiation (PAR), MJ m-2) and subtending leaf N content per unit area (N A , g m-2) and critical subtending leaf N content per unit area (CN A , g m-2) of cotton boll were calculated or simulated to evaluate effects of temperature and radiation, and N supply. Besides, the interactions among temperature, radiation and N supply were also explained by piecewise function. The overall performance of the model was calibrated and validated with independent data sets from three field experiments with two sowing dates, three or five flowering dates and three or four N fertilization rates for three subsequent years (2005, 2007, and 2009) at three ecological locations. The average RMSE and RE for fiber fineness, maturity, and micronaire predictions were 372 m g-1 and 5.0%, 0.11 m g-1 and 11.4%, 0.3 m g-1 and 12.3%, respectively, indicating a good fit between the simulated and observed data. It appears that the model can give a reliable prediction for fiber fineness, maturity and micronaire formation under various growing conditions.展开更多
Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random d...Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately.展开更多
Accurate acid placement constitutes a major concern in matrix stimulation because the acid tends to penetrate the zones of least resistance while leaving the low-permeability regions of the formation untreated.Degrada...Accurate acid placement constitutes a major concern in matrix stimulation because the acid tends to penetrate the zones of least resistance while leaving the low-permeability regions of the formation untreated.Degradable materials(fibers and solid particles)have recently shown a good capability as fluid diversion to overcome the issues related to matrix stimulation.Despite the success achieved in the recent acid stimulation jobs stemming from the use of some products that rely on fiber flocculation as the main diverting mechanism,it was observed that the volume of the base fluid and the loading of the particles are not optimized.The current industry lacks a scientific design guideline because the used methodology is based on experience or empirical studies in a particular area with a particular product.It is important then to understand the fundamentals of how acid diversion works in carbonates with different diverting mechanisms and diverters.Mathematical modeling and computer simulations are effective tools to develop this understanding and are efficiently applied to new product development,new applications of existing products or usage optimization.In this work,we develop a numerical model to study fiber dynamics in fluid flow.We employ a discrete element method in which the fibers are represented by multi-rigid-body systems of interconnected spheres.The discrete fiber model is coupled with a fluid flow solver to account for the inherent simultaneous interactions.The focus of the study is on the tendency for fibers to flocculate and bridge when interacting with suspending fluids and encountering restrictions that can be representative of fractures or wormholes in carbonates.The trends of the dynamic fiber behavior under various operating conditions including fiber loading,flow rate and fluid viscosity obtained from the numerical model show consistency with experimental observations.The present numerical investigation reveals that the bridging capability of the fiber–fluid system can be enhanced by increasing the fiber loading,selecting fibers with higher stiffness,reducing the injection flow rate,reducing the suspending fluid viscosity or increasing the attractive cohesive forces among fibers by using sticky fibers.展开更多
In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic senso...In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.展开更多
This study tested an improved fiber tracking algorithm, which was based on fiber assignment using a continuous tracking algorithm and a two-tensor model. Different models and tracking decisions were used by judging th...This study tested an improved fiber tracking algorithm, which was based on fiber assignment using a continuous tracking algorithm and a two-tensor model. Different models and tracking decisions were used by judging the type of estimation of each voxel. Thismethod should solve the cross-track problem. This study included eight healthy subjects, two axonal injury patients and seven demyelinating disease patients. This new algorithm clearly exhibited a difference in nerve fiber direction between axonal injury and demyelinating disease patients and healthy control subjects. Compared with fiber assignment with a continuous tracking algorithm, our novel method can track more and longer nerve fibers, and also can solve the fiber crossing problem.展开更多
Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model test...Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.展开更多
To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforce...To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating stow damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.展开更多
Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimen...Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimensional (3_D) orientation distribution of fibers on the results of stability analysis were examined. It is found that the relationship of the behavior in hydrodynamic stability and the parameter of the fiber given by all the three models are the same. However, the attenuation of flow instability is most distinct using 3_D hybrid model because the orientation of the fiber departures from the flow direction, and least apparent using its 2_D counterpart for that the fibers show a tendency towards alignment with the flow direction in this case.展开更多
Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers e...Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers embedded in a concrete matrix usually play a strong bridging effect to enhance the bonding force between fiber and the matrix,and directly contribute to the improvement of the post-cracking behavior and residual strength of SFRC.To gain a better understanding of the action behavior of steel fibers in matrix and further capture the failure mechanism of SFRC under dynamic loads,the mesoscopic modeling approach that assumes SFRC to be composed of different mesoscale phases(i.e.,steel fibers,coarse aggregates,mortar matrix,and interfacial transition zone(ITZ))has been widely employed to simulate the dynamic responses of SFRC material and structural members.This paper presents a comprehensive review of the state-of-the-art mesoscopic models and simulations for SFRC under dynamic loading.Generation approaches for the SFRC mesoscale model in the simulation works,including steel fiber,coarse aggregate,and the ITZ between them,are reviewed and compared systematically.The material models for different phases and the interaction relationship between fiber and concrete matrix are summarized comprehensively.Additionally,some example applications for SFRC under dynamic loads(i.e.,compression,tension,and contact blast)simulated using the general mesoscale models are given.Finally,some critical analysis on the current shortcomings of the mesoscale modeling of SFRC is highlighted,which is of great significance for the future investigation and development of SFRC.展开更多
An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane was performed. A dynamic model of bridging fiber pull-out of comp...An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane was performed. A dynamic model of bridging fiber pull-out of composite materials was presented. Resultingly the fiber failure is governed by maximum tensile stress, the fiber breaks and hence the crack extension should occur in self-similar fashion. By the methods of complex functions, the problem studied can be transformed into the dynamic model to the Reimann-Hilbert mixed boundary value problem, and a straightforward and easy analytical solution is presented. Analytical study on the crack propagation subjected to a ladder load and an instantaneous pulse loading is obtained respectively for orthotropic anisotropic body. By utilizing the solution, the concrete solutions of this model are attained by ways of superposition.展开更多
A novel fiber Bragg grating(FBG)sensor with three-dimensional(3D)fused deposition modeling(FDM)approach is proposed for effective stress measurement in soil mass.The three-diaphragm structure design is developed to me...A novel fiber Bragg grating(FBG)sensor with three-dimensional(3D)fused deposition modeling(FDM)approach is proposed for effective stress measurement in soil mass.The three-diaphragm structure design is developed to measure earth and water pressures simultaneously.The proposed transducer has advantages of small size,high sensitivity,low cost,immunity to electromagnetic interference and rapid prototyping.The working principle,design parameters,and manufacturing details are discussed.The proposed transducer was calibrated for earth and water pressures measurement by using weights and a specially designed pressure chamber,respectively.The calibration results showed that the wavelength of the transducer was proportional to the applied pressure.The sensitivity coefficients of the earth and water pressures were 12.633 nm/MPa and 6.282 nm/MPa,respectively.Repeated tests and error analysis demonstrated the excellent stability and accuracy of the earth and water pressure measurements.The performance of the proposed transducer was further verified by a model experimental test and numerical analysis,which indicated that the proposed transducer has great potential for practical applications.展开更多
Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penet...Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.展开更多
In an effort to find the effect of mass transfer, surface tension and drag forces on the velocity distribution, the mathematical model of the velocity profile of a nascent hollow fiber during membrane formation in the...In an effort to find the effect of mass transfer, surface tension and drag forces on the velocity distribution, the mathematical model of the velocity profile of a nascent hollow fiber during membrane formation in the air gap region was numerically simulated by using the Runge-Kutta method (fourth-order method). The effect of mass transfer on velocity distribution based on the complicated function (G(Cs h)) was presented and the effects of a complicated function were studied in two cases: in the first case, G(Cs h) was constant; in the second, G(Cs h) was variable. The latter was done by varying with the concentration of solvent in a nascent hollow fiber through the air-gap region. One empirical equation was used to describe this change and the predicted values had a better agreement with the experimental values. To verify the model hypotheses, hollow fiber membranes were spun from 20∶80 polybenzimidazole/polyetherimide dopes with 25.6 wt% solid in N, N-dimethylacetamide (DMAc) using water as the external and internal coagulants. Based on the experimental results of dry-jet wet-spinning process for the fabrication of hollow fiber membranes, it is found that the model calculated values were in a good agreement with the experimental values.展开更多
An integrated cotton fiber quality index (ICFQI) model with cotton fiber qualities which can directly express cotton fiber integrated quality and spinning yarn quality was studied. The fiber length, strength, Micron...An integrated cotton fiber quality index (ICFQI) model with cotton fiber qualities which can directly express cotton fiber integrated quality and spinning yarn quality was studied. The fiber length, strength, Micronalre (fiber fineness and fiber maturity), uniformity of fiber length, and short fiber content are the pivotal indexes expressing ICFQI. All of the results above are the basic knowledge to build up the models of ICFQI. According to spinning consistency index (SCI), spinning strength and spinning yarn integrated quality, ICFQI was the best choice. As the methods of ICFQI had quite a lot of advantages like explicit mechanism, few independent variables. The integrated fiber quality index had a significant positive correlation with yarn strength and spinning consistency, significant negative correlation with yarn evenness and yarn thin places. In additional, the model of the relationship between ICFQI and SCI was established as: SCI=0. 235 6·ICFQI +56.153. It was concluded that ICFQI value was the shared reference index for the testing of fiber inspection agency and the selection and distribution of raw cotton bales by textile mills.展开更多
This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analyti...This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analytical model developed,which makes good use of the advantage of the first-order shear deformation theory(FSDT),the multi-segment decomposition technique,the virtual spring technology,the Jacobi-Ritz approach,and the transfer function method.The equivalent material properties of HHC are firstly determined by the modified Gibson’s formula,and the related energy equations are derived for the HHC-FRCS-CS combined shells,from which the fundamental frequencies,the mode shapes,and the forced vibration responses are solved.The current model is verified through the discussion of convergence and comparative analysis with the associated published literature and finite element(FE)results.The effects of geometric parameters of HHC on the dynamic property of the structure are further investigated with the verified model.It reveals that the vibration suppression capability can be greatly enhanced by reducing the ratio of HHC thickness to total thickness and the ratio of wall thickness of honeycomb cell to overall radius,and by increasing the ratio of length of honeycomb cell to overall radius and honeycomb characteristic angle of HHC.展开更多
The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a re...The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers.展开更多
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ...The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions展开更多
基金supported by the National Natural Science Foundation of China(No.12072056)the National Key Research and Development Program of China(No.2018YFA0702800)+1 种基金the Jiangsu-Czech Bilateral Co-Funding R&D Project(No.BZ2023011)the Fundamental Research Funds for the Central Universities(No.B220204002).
文摘Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.
基金Project(51072235) supported by the National Natural Science Foundation of ChinaProject(11JJ1008) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(20110162110044) supported by the PhD Program Foundation of Ministry of Education of ChinaProject(7433001207) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2001JF3215) supported by Hunan Provincial Science and Technology Plan,China
文摘Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelectric composites,and show superior properties to monolithic piezoelectric wafer due to their distinctive structures.Numerous work has focused on the performance prediction of the composites by evaluation of structural parameters and properties of the constituent materials with analytical and numerical methods.Various applications have been explored for the piezoelectric fiber composites,including vibration and noise control,health monitoring,morphing of structures and energy harvesting,in which the composites play key role and demonstrate the necessity for further development.
文摘A data gathering system is designed for the interferometric fiber optic gyroscope (IFOG) of land strapdown inertial system. IFOG is tested and the testing curve is given. The test data of IFOG are analyzed with Allan variance method and each error coefficient is identified. Furthermore, a random drift error model for IFOG is built by the method of time series analysis. The conclusion provides supports for improving IFOG design and compensating for errors of IFOG in practice.
基金funded by the National Natural Science Foundation of China (30771277 and 30771279)
文摘Crop performance is determined by the combined effects of the genotype of the crop and the environmental conditions of the production system. This study was undertaken to develop a dynamic model for simulating environmental (temperature and solar radiation) and N supply effects on fiber fineness, maturity and micronaire. Three different experiments involving genotypes, sowing dates, and N fertilization rates were conducted to support model development and model evaluation. The growth and development duration of fiber fineness, maturity, and micronaire were scaled by using physiological development time of secondary wall synthesis (PDT SWSP ), which was determined based on the constant ratio of SWSP/ BMP. PTP (product of relative thermal effectiveness (RTE) and photosynthetically active radiation (PAR), MJ m-2) and subtending leaf N content per unit area (N A , g m-2) and critical subtending leaf N content per unit area (CN A , g m-2) of cotton boll were calculated or simulated to evaluate effects of temperature and radiation, and N supply. Besides, the interactions among temperature, radiation and N supply were also explained by piecewise function. The overall performance of the model was calibrated and validated with independent data sets from three field experiments with two sowing dates, three or five flowering dates and three or four N fertilization rates for three subsequent years (2005, 2007, and 2009) at three ecological locations. The average RMSE and RE for fiber fineness, maturity, and micronaire predictions were 372 m g-1 and 5.0%, 0.11 m g-1 and 11.4%, 0.3 m g-1 and 12.3%, respectively, indicating a good fit between the simulated and observed data. It appears that the model can give a reliable prediction for fiber fineness, maturity and micronaire formation under various growing conditions.
基金Supported by Research Innovation Fund Project “Research on micro machining mechanism of fiber reinforced composites”(Grant No.HIT.NSRIF.2014055)of Harbin Institute of Technology,China
文摘Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately.
文摘Accurate acid placement constitutes a major concern in matrix stimulation because the acid tends to penetrate the zones of least resistance while leaving the low-permeability regions of the formation untreated.Degradable materials(fibers and solid particles)have recently shown a good capability as fluid diversion to overcome the issues related to matrix stimulation.Despite the success achieved in the recent acid stimulation jobs stemming from the use of some products that rely on fiber flocculation as the main diverting mechanism,it was observed that the volume of the base fluid and the loading of the particles are not optimized.The current industry lacks a scientific design guideline because the used methodology is based on experience or empirical studies in a particular area with a particular product.It is important then to understand the fundamentals of how acid diversion works in carbonates with different diverting mechanisms and diverters.Mathematical modeling and computer simulations are effective tools to develop this understanding and are efficiently applied to new product development,new applications of existing products or usage optimization.In this work,we develop a numerical model to study fiber dynamics in fluid flow.We employ a discrete element method in which the fibers are represented by multi-rigid-body systems of interconnected spheres.The discrete fiber model is coupled with a fluid flow solver to account for the inherent simultaneous interactions.The focus of the study is on the tendency for fibers to flocculate and bridge when interacting with suspending fluids and encountering restrictions that can be representative of fractures or wormholes in carbonates.The trends of the dynamic fiber behavior under various operating conditions including fiber loading,flow rate and fluid viscosity obtained from the numerical model show consistency with experimental observations.The present numerical investigation reveals that the bridging capability of the fiber–fluid system can be enhanced by increasing the fiber loading,selecting fibers with higher stiffness,reducing the injection flow rate,reducing the suspending fluid viscosity or increasing the attractive cohesive forces among fibers by using sticky fibers.
基金the financial support provided by the National Basic Research Program of China (973 Program) (Grant No. 2011CB710605)the National Natural Science Foundation of China (Grant Nos. 41102174, 41302217)supported by the National Key Technology R&D Program of China (Grant No. 2012BAK10B05)
文摘In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.
基金supported by Xiamen Technology Projects Grand (The study of chronic cerebrovascular insufficiently in Magnetic Resonance Imaging), No.3502Z20084028
文摘This study tested an improved fiber tracking algorithm, which was based on fiber assignment using a continuous tracking algorithm and a two-tensor model. Different models and tracking decisions were used by judging the type of estimation of each voxel. Thismethod should solve the cross-track problem. This study included eight healthy subjects, two axonal injury patients and seven demyelinating disease patients. This new algorithm clearly exhibited a difference in nerve fiber direction between axonal injury and demyelinating disease patients and healthy control subjects. Compared with fiber assignment with a continuous tracking algorithm, our novel method can track more and longer nerve fibers, and also can solve the fiber crossing problem.
基金supported by the National Natural Science Foundation of China (Grant Nos.41502299,41372306)Research Planning of Sichuan Education Department, China (Grant No.16ZB0105)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2016Z007)
文摘Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions.
基金the National Natural Science Foundation of China under Grant Nos.51278218 and 51078166
文摘To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating stow damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .1 0 3 72 0 90 )
文摘Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimensional (3_D) orientation distribution of fibers on the results of stability analysis were examined. It is found that the relationship of the behavior in hydrodynamic stability and the parameter of the fiber given by all the three models are the same. However, the attenuation of flow instability is most distinct using 3_D hybrid model because the orientation of the fiber departures from the flow direction, and least apparent using its 2_D counterpart for that the fibers show a tendency towards alignment with the flow direction in this case.
基金the financial support from the National Natural Science Foundation of China(52178190 and 52078250)the Science and Technology on Near-Surface Detection Laboratory(6142414200505)+1 种基金the Interdisciplinary Innovation Fundation for Graduates,Nanjing University of Aeronautics and Astronautics(KXKCXJJ202005)The support provided by the China Scholarship Council(202006830096)during a visit of Zhangyu Wu to University College London。
文摘Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers embedded in a concrete matrix usually play a strong bridging effect to enhance the bonding force between fiber and the matrix,and directly contribute to the improvement of the post-cracking behavior and residual strength of SFRC.To gain a better understanding of the action behavior of steel fibers in matrix and further capture the failure mechanism of SFRC under dynamic loads,the mesoscopic modeling approach that assumes SFRC to be composed of different mesoscale phases(i.e.,steel fibers,coarse aggregates,mortar matrix,and interfacial transition zone(ITZ))has been widely employed to simulate the dynamic responses of SFRC material and structural members.This paper presents a comprehensive review of the state-of-the-art mesoscopic models and simulations for SFRC under dynamic loading.Generation approaches for the SFRC mesoscale model in the simulation works,including steel fiber,coarse aggregate,and the ITZ between them,are reviewed and compared systematically.The material models for different phases and the interaction relationship between fiber and concrete matrix are summarized comprehensively.Additionally,some example applications for SFRC under dynamic loads(i.e.,compression,tension,and contact blast)simulated using the general mesoscale models are given.Finally,some critical analysis on the current shortcomings of the mesoscale modeling of SFRC is highlighted,which is of great significance for the future investigation and development of SFRC.
文摘An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane was performed. A dynamic model of bridging fiber pull-out of composite materials was presented. Resultingly the fiber failure is governed by maximum tensile stress, the fiber breaks and hence the crack extension should occur in self-similar fashion. By the methods of complex functions, the problem studied can be transformed into the dynamic model to the Reimann-Hilbert mixed boundary value problem, and a straightforward and easy analytical solution is presented. Analytical study on the crack propagation subjected to a ladder load and an instantaneous pulse loading is obtained respectively for orthotropic anisotropic body. By utilizing the solution, the concrete solutions of this model are attained by ways of superposition.
基金funding support from the National Natural Science Foundation of China(Grant Nos.41972271 and 42177127)Sanya Science and Education Innovation Park of Wuhan University of Technology(Grant No.2020KF0007)。
文摘A novel fiber Bragg grating(FBG)sensor with three-dimensional(3D)fused deposition modeling(FDM)approach is proposed for effective stress measurement in soil mass.The three-diaphragm structure design is developed to measure earth and water pressures simultaneously.The proposed transducer has advantages of small size,high sensitivity,low cost,immunity to electromagnetic interference and rapid prototyping.The working principle,design parameters,and manufacturing details are discussed.The proposed transducer was calibrated for earth and water pressures measurement by using weights and a specially designed pressure chamber,respectively.The calibration results showed that the wavelength of the transducer was proportional to the applied pressure.The sensitivity coefficients of the earth and water pressures were 12.633 nm/MPa and 6.282 nm/MPa,respectively.Repeated tests and error analysis demonstrated the excellent stability and accuracy of the earth and water pressure measurements.The performance of the proposed transducer was further verified by a model experimental test and numerical analysis,which indicated that the proposed transducer has great potential for practical applications.
基金Supported by the Hi-Tech. Research and Development Program of China (863) (2002AA649280, 2002AA304030), National Natural Science Foundation of China (No. 20206002), Beijing NOVA program (H013610250112), University Postdoctrate Research Foundation of Chin
文摘Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.
文摘In an effort to find the effect of mass transfer, surface tension and drag forces on the velocity distribution, the mathematical model of the velocity profile of a nascent hollow fiber during membrane formation in the air gap region was numerically simulated by using the Runge-Kutta method (fourth-order method). The effect of mass transfer on velocity distribution based on the complicated function (G(Cs h)) was presented and the effects of a complicated function were studied in two cases: in the first case, G(Cs h) was constant; in the second, G(Cs h) was variable. The latter was done by varying with the concentration of solvent in a nascent hollow fiber through the air-gap region. One empirical equation was used to describe this change and the predicted values had a better agreement with the experimental values. To verify the model hypotheses, hollow fiber membranes were spun from 20∶80 polybenzimidazole/polyetherimide dopes with 25.6 wt% solid in N, N-dimethylacetamide (DMAc) using water as the external and internal coagulants. Based on the experimental results of dry-jet wet-spinning process for the fabrication of hollow fiber membranes, it is found that the model calculated values were in a good agreement with the experimental values.
基金China/CSIRO Project on Predicting Yarn Quality from Cotton Fineness and Maturity Measurements(No. 400012)
文摘An integrated cotton fiber quality index (ICFQI) model with cotton fiber qualities which can directly express cotton fiber integrated quality and spinning yarn quality was studied. The fiber length, strength, Micronalre (fiber fineness and fiber maturity), uniformity of fiber length, and short fiber content are the pivotal indexes expressing ICFQI. All of the results above are the basic knowledge to build up the models of ICFQI. According to spinning consistency index (SCI), spinning strength and spinning yarn integrated quality, ICFQI was the best choice. As the methods of ICFQI had quite a lot of advantages like explicit mechanism, few independent variables. The integrated fiber quality index had a significant positive correlation with yarn strength and spinning consistency, significant negative correlation with yarn evenness and yarn thin places. In additional, the model of the relationship between ICFQI and SCI was established as: SCI=0. 235 6·ICFQI +56.153. It was concluded that ICFQI value was the shared reference index for the testing of fiber inspection agency and the selection and distribution of raw cotton bales by textile mills.
基金supported by the National Natural Science Foundation of China(Nos.52175079 and 12072091)the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments of China(No.6142905192512)+2 种基金the Fundamental Research Funds for the Central Universities of China(No.N2103026)the Major Projects of AeroEngines and Gas Turbines of China(No.J2019-I-0008-0008)the China Postdoctoral Science Foundation(No.2020M680990)。
文摘This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analytical model developed,which makes good use of the advantage of the first-order shear deformation theory(FSDT),the multi-segment decomposition technique,the virtual spring technology,the Jacobi-Ritz approach,and the transfer function method.The equivalent material properties of HHC are firstly determined by the modified Gibson’s formula,and the related energy equations are derived for the HHC-FRCS-CS combined shells,from which the fundamental frequencies,the mode shapes,and the forced vibration responses are solved.The current model is verified through the discussion of convergence and comparative analysis with the associated published literature and finite element(FE)results.The effects of geometric parameters of HHC on the dynamic property of the structure are further investigated with the verified model.It reveals that the vibration suppression capability can be greatly enhanced by reducing the ratio of HHC thickness to total thickness and the ratio of wall thickness of honeycomb cell to overall radius,and by increasing the ratio of length of honeycomb cell to overall radius and honeycomb characteristic angle of HHC.
文摘The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers.
文摘The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions