The diameter of the excitation beam was decreased greatly by integrating the fiber on the microfluidic chip as light propagation medium.The coupling efficiency of the fiber was improved with optical fiber collimation ...The diameter of the excitation beam was decreased greatly by integrating the fiber on the microfluidic chip as light propagation medium.The coupling efficiency of the fiber was improved with optical fiber collimation device coupling beam. The chip was placed in the darkroom to avoid the interference of the external light.The cost of the instrument was decreased with a high brightness blue LED as excitation source;the performance of the system was valuated by the determination of FITC fluorescein with a minimum detectable concentration of 2.2×10^(-8) mol/L,the Signal-to-Noise Ratio (SNR) S/N=5.The correlation coefficient of the detection system within the range of 1.8×10^(-7) mol/L~4×10^(-5)mol/L was 0.9972.展开更多
氟化钴具有良好的库伦效率、理论比容量、循环稳定性以及容量保持能力,表现出较好的电化学性能,在化学储能领域引起了研究人员的关注。以六水氯化钴为钴源、氟化铵为氟源,采用一步溶剂热法在活性碳布表面负载氟化钴晶体纳米片阵列,用TEM...氟化钴具有良好的库伦效率、理论比容量、循环稳定性以及容量保持能力,表现出较好的电化学性能,在化学储能领域引起了研究人员的关注。以六水氯化钴为钴源、氟化铵为氟源,采用一步溶剂热法在活性碳布表面负载氟化钴晶体纳米片阵列,用TEM、SEM和XRD考察了氟化钴的微观形貌结构和物相组成,利用电化学工作站得到了氟化钴的电化学循环稳定、比电容等性能。结果表明:该纳米片厚10~30 nm,垂直生长在碳布纤维表面呈交错网络状分布;在1 m A/cm^(2)的电流密度下,复合电极的比电容为826.6 F/g,循环充放电1000次后,比容量保持率为93.7%。本研究为氟化物基复合材料的短路径合成提供了一种可行方案,在碳布表面阵列式生长氟化物晶体,构筑全电化学活性的无粘结剂型复合电极,为优化氟化物的电化学性能提供了一种新的研究思路。展开更多
Metal fibers have been widely used in many industrial applications due to their unique advantages. In certain applications, such as catalyst supports or orthopedic implants, a rough surface or tiny outshoots on the su...Metal fibers have been widely used in many industrial applications due to their unique advantages. In certain applications, such as catalyst supports or orthopedic implants, a rough surface or tiny outshoots on the surface of metal fibers to increase surface area are needed. However, it has not been concerned about the surface morphologies of metal fiber in the current research of metal fiber manufacturing. In this paper, a special multi-tooth tool composed of a row of triangular tiny teeth is designed. The entire cutting layer of multi-tooth tool bifurcates into several thin cutting layers due to tiny teeth involved in cutting. As a result, several stainless steel fibers with periodic micro-fins are produced simultaneously. Morphology of periodic micro-fins is found to be diverse and can be classified into three categories: unilateral plane, unilateral tapering and bilateral. There are two forming mechanisms for the micro-fins. One is that periodic burrs remained on the free side of cutting layer of a tiny tooth create micro-fins of stainless steel fiber produced by the next neighboring tiny tooth; the other is that the connections between two fibers stuck together come to be micro-fins if the two fibers are finally detached. Influence of cutting conditions on formation of micro-fins is investigated. Experimental results show that cutting depth has no significant effect on micro-fin formation, high cutting speed is conducive to micro-fin formation, and feed should be between 0.12 mm/r and 0.2 mm/r to reliably obtain stainless steel fiber with micro-fins. This research presents a new pattern of stainless steel fiber characterized by periodic micro-fins formed on the edge of fiber and its manufacturing method.展开更多
A PDMS electrophoresis microchip,which integrated with optical fiber for fluorescence detection,was fabricated by using silicon master.A deep reactive ion etches (DRIE) technology was used to fabricate the silicon ma...A PDMS electrophoresis microchip,which integrated with optical fiber for fluorescence detection,was fabricated by using silicon master.A deep reactive ion etches (DRIE) technology was used to fabricate the silicon master with positive features.The PDMS replica was fabricated by casting PDMS prepolymer against the silicon master,where an optical fiber was first fixed on the end of separation microchannel.To improve the rigid characteristics of integrated PDMS microchip,the chips were subsequently assembled by reversible sealing against glass plate.A blue light emitting diode (LED) was used as excitation light sources for inducing fluorescence detection through coupling LED light into the optical fiber.As an application, integrated PDMS microchip was tested in the capillary electrophoresis separation of DNA markers.The results showed that DNA markers could be effectively separated and detected except for the segments of 271 and 281.展开更多
In this research, a series of wood-based panels were produced by using wood chips [beech (Fagus Sylvatica L.) and Scotch pine (Pinus sylvestris L.)] as wastes of wood-working workshops and acrylic fibers as wastes of ...In this research, a series of wood-based panels were produced by using wood chips [beech (Fagus Sylvatica L.) and Scotch pine (Pinus sylvestris L.)] as wastes of wood-working workshops and acrylic fibers as wastes of textiles factory. Four kinds of different panels (Eltapan I, II, III and IV) were obtained by mixing these components in different composition (0%, 25% and 50%). Some physical and mechanical properties of the samples taken from these panels were determined in accordance with ASTM D1037-12 and ASTM-C 1113. The values were compared to properties of industrially produced chipboard. As a result, the textile fibers used as additive material reduced density, thermal conductivity and bending resistance of wood panel and increased dimensional stability of wood panel.展开更多
基金financial support from the National Science Foundation of China under Grant number 20299030,60427001 and 60501020.
文摘The diameter of the excitation beam was decreased greatly by integrating the fiber on the microfluidic chip as light propagation medium.The coupling efficiency of the fiber was improved with optical fiber collimation device coupling beam. The chip was placed in the darkroom to avoid the interference of the external light.The cost of the instrument was decreased with a high brightness blue LED as excitation source;the performance of the system was valuated by the determination of FITC fluorescein with a minimum detectable concentration of 2.2×10^(-8) mol/L,the Signal-to-Noise Ratio (SNR) S/N=5.The correlation coefficient of the detection system within the range of 1.8×10^(-7) mol/L~4×10^(-5)mol/L was 0.9972.
文摘氟化钴具有良好的库伦效率、理论比容量、循环稳定性以及容量保持能力,表现出较好的电化学性能,在化学储能领域引起了研究人员的关注。以六水氯化钴为钴源、氟化铵为氟源,采用一步溶剂热法在活性碳布表面负载氟化钴晶体纳米片阵列,用TEM、SEM和XRD考察了氟化钴的微观形貌结构和物相组成,利用电化学工作站得到了氟化钴的电化学循环稳定、比电容等性能。结果表明:该纳米片厚10~30 nm,垂直生长在碳布纤维表面呈交错网络状分布;在1 m A/cm^(2)的电流密度下,复合电极的比电容为826.6 F/g,循环充放电1000次后,比容量保持率为93.7%。本研究为氟化物基复合材料的短路径合成提供了一种可行方案,在碳布表面阵列式生长氟化物晶体,构筑全电化学活性的无粘结剂型复合电极,为优化氟化物的电化学性能提供了一种新的研究思路。
基金Supported by National Natural Science Foundation of China(Grant No.51375176)Guangdong Provincial Natural Science Foundation of China(Grant No.2014A030313264)Fundamental Research Funds for the Central Universities,SCUT,China(Grant No.2013ZZ017)
文摘Metal fibers have been widely used in many industrial applications due to their unique advantages. In certain applications, such as catalyst supports or orthopedic implants, a rough surface or tiny outshoots on the surface of metal fibers to increase surface area are needed. However, it has not been concerned about the surface morphologies of metal fiber in the current research of metal fiber manufacturing. In this paper, a special multi-tooth tool composed of a row of triangular tiny teeth is designed. The entire cutting layer of multi-tooth tool bifurcates into several thin cutting layers due to tiny teeth involved in cutting. As a result, several stainless steel fibers with periodic micro-fins are produced simultaneously. Morphology of periodic micro-fins is found to be diverse and can be classified into three categories: unilateral plane, unilateral tapering and bilateral. There are two forming mechanisms for the micro-fins. One is that periodic burrs remained on the free side of cutting layer of a tiny tooth create micro-fins of stainless steel fiber produced by the next neighboring tiny tooth; the other is that the connections between two fibers stuck together come to be micro-fins if the two fibers are finally detached. Influence of cutting conditions on formation of micro-fins is investigated. Experimental results show that cutting depth has no significant effect on micro-fin formation, high cutting speed is conducive to micro-fin formation, and feed should be between 0.12 mm/r and 0.2 mm/r to reliably obtain stainless steel fiber with micro-fins. This research presents a new pattern of stainless steel fiber characterized by periodic micro-fins formed on the edge of fiber and its manufacturing method.
基金This present work was supported by grant from the National Natural Science Foundation of China (N0.60501020, No.60341005 and No.20299030)
文摘A PDMS electrophoresis microchip,which integrated with optical fiber for fluorescence detection,was fabricated by using silicon master.A deep reactive ion etches (DRIE) technology was used to fabricate the silicon master with positive features.The PDMS replica was fabricated by casting PDMS prepolymer against the silicon master,where an optical fiber was first fixed on the end of separation microchannel.To improve the rigid characteristics of integrated PDMS microchip,the chips were subsequently assembled by reversible sealing against glass plate.A blue light emitting diode (LED) was used as excitation light sources for inducing fluorescence detection through coupling LED light into the optical fiber.As an application, integrated PDMS microchip was tested in the capillary electrophoresis separation of DNA markers.The results showed that DNA markers could be effectively separated and detected except for the segments of 271 and 281.
文摘In this research, a series of wood-based panels were produced by using wood chips [beech (Fagus Sylvatica L.) and Scotch pine (Pinus sylvestris L.)] as wastes of wood-working workshops and acrylic fibers as wastes of textiles factory. Four kinds of different panels (Eltapan I, II, III and IV) were obtained by mixing these components in different composition (0%, 25% and 50%). Some physical and mechanical properties of the samples taken from these panels were determined in accordance with ASTM D1037-12 and ASTM-C 1113. The values were compared to properties of industrially produced chipboard. As a result, the textile fibers used as additive material reduced density, thermal conductivity and bending resistance of wood panel and increased dimensional stability of wood panel.