期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Compressive properties of a novel slurry-infiltrated fiber concrete reinforced with arc-shaped steel fibers
1
作者 Hedong LI Yabiao LI +3 位作者 Yunfeng PAN P.L.NG Christopher K.Y.LEUNG Xin ZHAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第6期543-556,共14页
Slurry-infiltrated fiber concrete(SIFCON)is a sort of strain hardening cement-based composite material,typically made with 5%–20%steel fibers.This study focused on a novel type of SIFCON in which hooked-end steel fib... Slurry-infiltrated fiber concrete(SIFCON)is a sort of strain hardening cement-based composite material,typically made with 5%–20%steel fibers.This study focused on a novel type of SIFCON in which hooked-end steel fibers were replaced by arc-shaped steel fibers.The quasi-static compressive properties of the SIFCON were first measured.Test results suggested that using arc-shaped steel fibers in lieu of hooked-end steel fibers increased the quasi-static compressive strength by 47.1%and the strain at peak stress by 56.3%.We attribute these improvements to new crack-resisting mechanisms,namely“fiber crosslock”,“dual bridging”,and“confinement loops”,when the arc-shaped steel fibers are introduced into SIFCON.As high impact resistance is a special property of SIFCON that is of practical significance,the dynamic compressive properties of arc-shaped steel fiber SIFCON were studied by using an 80-mm-diameter split Hopkinson pressure bar(SHPB).The results showed that the dynamic compressive strength,dynamic increase factor(DIF),and dynamic toughness of SIFCON all increased with the strain rate.The SIFCON incorporating arc-shaped steel fibers proved to have significant advantages in structural applications requiring high impact resistance. 展开更多
关键词 Slurry-infiltrated fiber concrete(SIFCON) Arc-shaped steel fiber Quasi-static compressive properties Spilt Hopkinson pressure bar(SHPB) Dynamic compressive properties
原文传递
Effect of Steel Fiber on Concrete’s Compressive Strength
2
作者 Mohammed Saed Yusuf Abdirisak Bashir Isak +4 位作者 Guled Ali Mohamud Abdullahi Hashi Warsame Yahye Ibrahim Osman Abdullahi Husein Ibrahim Liban Abdi Aziz Elmi 《Open Journal of Civil Engineering》 CAS 2023年第1期192-197,共6页
The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers... The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers best result. Manually, cement, fine aggregates, coarse aggregates, steel fibers, and water were mixed together properly. A slump test was carried on the mixed concrete. After determining the workability, the mixed concrete was poured into cubes dimension 150 mm × 150 mm × 150 mm and left for 24 hours. After 24 hours, the samples were removed from the mold and placed in a water tank to cure for 7 to 28 days. The cube was tested for compressive and flexural strength in a universal testing machine after the samples had cured for the required 7 - 28 days. This study focuses on how to obtain high strength concrete using with steel fiber in the Conventional mix ratio to enhance concrete strength. Concrete reinforcement using steel fibers alters the characteristics of the concrete, allowing it to withstand fracture and hence improve its mechanical qualities. This study reports on an experimental study that reveals the effect of steel fiber on concrete compressive strength and the optimal steel fiber ratio that produces the best results. Steel fiber reinforcing improved the compressive strength of concrete. The average compressive strength of normal M25 concrete with 0% steel fibers and curing ages of 7 and 28 days was determined to be 22.97 N/mm<sup>2</sup> and 25.78 N/mm<sup>2</sup>, respectively. The steel fibers are then added in various concentrations, such as 1%, 2%, and 3%, with aspect ratios of 70. The compressive strength of concrete with 1%, 2%, and 3% steel fiber with an aspect ratio of 70 was examined at 7 days and found to be 23.96, 24.80, and 26.14 N/mm<sup>2</sup> correspondingly. 展开更多
关键词 Steel fiber Reinforced concrete fiber Reinforcement Compression Strength of concrete Improvement Compression Strength
下载PDF
Factorial Experimental Design to Study the Effects of Layers and Fiber Content on Concrete Flexural Behavior
3
作者 Dumbiri H. Odia 《Open Journal of Civil Engineering》 CAS 2023年第1期83-102,共20页
Experimentation has come a long in helping researchers achieve breakthroughs in their different scientific areas and engineering happens to be one of those areas with the most impact from experimental advancement. The... Experimentation has come a long in helping researchers achieve breakthroughs in their different scientific areas and engineering happens to be one of those areas with the most impact from experimental advancement. The need for valid experimental results free from biases and confounding conclusions has prompted the development of new experimental techniques that takes consideration of all applicable factor and combinations in providing answers on a research topic, and the Factorial Experimental design credited to Sir Ronald Fisher is one technique yielding highly valid results. This paper uses the factorial design of experiments to research the flexural impact of polyvinyl acetate fiber and layered concrete in construction. The experiment considered two levels of fiber contents and two levels of layers, and prepared samples with all combinations of the variable factors. The samples were tested after 7 days from casting for flexural strength and an advance statistical analysis was performed on the flexural responses of the samples using R-program. The results from the analyses revealed the significance of the variables to the flexural strength of the samples, as well as their interactions. The experiment concluded that based on the number of layers and fiber content used for the experiment, casting concrete in layers does have a significant negative effect on the flexural strength of concrete, and the failure pattern of concrete members under flexural load in evidently influenced by the material composition of the concrete, and that it can be evidently influenced by casting the concrete in layers. 展开更多
关键词 Experimental Design concrete Flexural Strength Factorial Design of Experiments concrete fibers concrete Layers
下载PDF
Experimental Investigation on Fracture Performance of Short Basalt Fiber Bundle Reinforced Concrete
4
作者 Jinggan Shao Jiao Ma +4 位作者 Renlong Liu Ye Liu Pu Zhang Yi Tang Yunjun Huang 《Structural Durability & Health Monitoring》 EI 2022年第4期291-305,共15页
In this paper,a notched three-point bending test is used to study the fracture performance of the short basalt fiber bundle reinforced concrete(SBFBRC).To compare and analyze the enhancement effect of different diamet... In this paper,a notched three-point bending test is used to study the fracture performance of the short basalt fiber bundle reinforced concrete(SBFBRC).To compare and analyze the enhancement effect of different diameters and different content of basalt fiber bundles on the fracture performance of concrete,some groups are set up,and the P-CMOD curves of each group of specimens are measured,and the fracture toughness and fracture energy of each control group are calculated.The fracture toughness and fracture energy are two important fracture performance parameters to study the effect and law of the new basalt fiber bundles on the fracture performance of concrete.The research results show that the diameter and content of the new basalt fiber bundles have a certain effect on the fracture performance of concrete.With the increase of the content of basalt fiber bundles,the peak load,crack initiation toughness,instability toughness and fracture energy of SBFBRC are greatly improved compared with the benchmark group.When the fiber bundle diameter is 0.2 mm,the peak load increases by 69.5%compared with the reference group.The instability toughness reaches its maximum value at 0.2 mm diameter,which is 59.7%higher than the benchmark. 展开更多
关键词 Basalt fiber bundle fracture toughness fracture energy fiber concrete
下载PDF
Mechanical Properties of Layered Steel Fiber and Hybrid Fiber Reinforced Concrete 被引量:5
5
作者 卢哲安 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期733-736,共4页
To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as com... To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C. 展开更多
关键词 layered steel fiber reinforced concrete mechanical properties layer hybrid fiber reinforced concrete
下载PDF
Mechanical Properties of Layered Hybrid Fiber Reinforced Concrete 被引量:3
6
作者 袁海庆 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第2期68-70,共3页
To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical pr... To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical properties of concrete were discussed.The mechanical properties include compressive strength,tensile strength,flexural strength,compressive stress-strain relationship,flexural toughness and cracking resistance of concrete.The testing results and analysis demonstrate that layered hybrid fibers can significantly improve the flexural strength,toughness and cracking resistance of concrete while the cost of concrete increases slightly. 展开更多
关键词 layered hybrid fiber reinforced concrete STRENGTH flexural toughness
下载PDF
Mesoscopic Modeling Approach and Application for Steel Fiber Reinforced Concrete under Dynamic Loading:A Review 被引量:2
7
作者 Jinhua Zhang Zhangyu Wu +2 位作者 Hongfa Yu Haiyan Ma Bo Da 《Engineering》 SCIE EI CAS 2022年第9期220-238,共19页
Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers e... Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers embedded in a concrete matrix usually play a strong bridging effect to enhance the bonding force between fiber and the matrix,and directly contribute to the improvement of the post-cracking behavior and residual strength of SFRC.To gain a better understanding of the action behavior of steel fibers in matrix and further capture the failure mechanism of SFRC under dynamic loads,the mesoscopic modeling approach that assumes SFRC to be composed of different mesoscale phases(i.e.,steel fibers,coarse aggregates,mortar matrix,and interfacial transition zone(ITZ))has been widely employed to simulate the dynamic responses of SFRC material and structural members.This paper presents a comprehensive review of the state-of-the-art mesoscopic models and simulations for SFRC under dynamic loading.Generation approaches for the SFRC mesoscale model in the simulation works,including steel fiber,coarse aggregate,and the ITZ between them,are reviewed and compared systematically.The material models for different phases and the interaction relationship between fiber and concrete matrix are summarized comprehensively.Additionally,some example applications for SFRC under dynamic loads(i.e.,compression,tension,and contact blast)simulated using the general mesoscale models are given.Finally,some critical analysis on the current shortcomings of the mesoscale modeling of SFRC is highlighted,which is of great significance for the future investigation and development of SFRC. 展开更多
关键词 Steel fiber reinforced concrete Mesoscale modeling Dynamic loading Materials model Interfacial characteristic
下载PDF
Effect of Acid Rain Erosion on Steel Fiber Reinforced Concrete 被引量:2
8
作者 王艳 牛荻涛 SONG Zhanping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期121-128,共8页
Acid rain can deteriorate the performance of reinforced concrete structure.Combined with the characteristics of acid rain in China,the properties of steel fiber reinforced concrete subjected to acid rain were studied.... Acid rain can deteriorate the performance of reinforced concrete structure.Combined with the characteristics of acid rain in China,the properties of steel fiber reinforced concrete subjected to acid rain were studied.The effects of steel fiber content and pH value of acid rain on the mass loss,erosion depth,neutralization depth,and splitting tensile strength of tested concrete were investigated.The mercury intrusion pore(MIP) test was used to analyze the influence of steel fiber on the acid rain resistance of concrete matrix.The results show that the corrosion of steel fiber reinforced concrete subjected to acid rain results from the combined effect of H^+ and SO4^2- in the acid rain,and steel fiber can improve the acid rain resistance of the tested concrete by improving the pore structure and enhancing the tie effect of the concrete matrix.The experiment further indicates that the optimum content of steel fiber is 1.5%compared to the various mixing proportion in this tests.The tested concrete mass loss and splitting tensile strength decrease followed by increasing as a function of corrosion time when the pH value of the simulation solution is 3 or 4,while they decrease continuously in the simulation solution at pH 2.Thanks to the tie effect of steel fiber,the spalling of concrete matrix is significantly improved,and the erosion depth and neutralization depth are less than those of conventional concrete. 展开更多
关键词 steel fiber reinforced concrete acid rain neutralization depth erosion depth
下载PDF
Dynamic Mechanical Behaviour of Ultra-high Performance Fiber Reinforced Concretes 被引量:2
9
作者 赖建中 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第6期938-945,共8页
Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fra... Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction. 展开更多
关键词 ultra-high performance fiber reinforced concretes split Hopkinson pressurebar DYNAMIC repeated impact
下载PDF
Flexural Strength and Behavior of Polypropylene Fiber Reinforced Concrete Beams 被引量:2
10
作者 姚武 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第2期54-57,共4页
The strength and deformation characteristics of polypropylene fiber reinforced concrete ( PFRC) beams were investigated by four-point bending procedures in this paper. Two kinds of polypropylene fibers with different ... The strength and deformation characteristics of polypropylene fiber reinforced concrete ( PFRC) beams were investigated by four-point bending procedures in this paper. Two kinds of polypropylene fibers with different fiber contents (0.2% , 0.5% , 1.0% and 1.5% ) by volume were used in, the beam, which measured 100 × 100 mm with a span of 300 mm. It was found that the strength of the reinforced concrete beams was significantly decreased, whereas the flexural toughness was improved, compared to those unreinforced concrete beams. Geometry properties and volume contents of polypropylene fiber were considered to be important factors for improving the flexural toughness. Moreover, the composite mechanism between polypropylene fiber and concrete was analyzed and discussed. 展开更多
关键词 polypropylene fiber mechanical properties fiber reinforced concrete
下载PDF
A Study on the Estimation of Prefabricated Glass Fiber Reinforced Concrete Panel Strength Values with an Artificial Neural Network Model 被引量:2
11
作者 S.A.Yıldızel A.U.Öztürk 《Computers, Materials & Continua》 SCIE EI 2016年第4期41-52,共12页
In this study,artificial neural networks trained with swarm based artificial bee colony optimization algorithm was implemented for prediction of the modulus of rapture values of the fabricated glass fiber reinforced c... In this study,artificial neural networks trained with swarm based artificial bee colony optimization algorithm was implemented for prediction of the modulus of rapture values of the fabricated glass fiber reinforced concrete panels.For the application of the ANN models,143 different four-point bending test results of glass fiber reinforced concrete mixes with the varied parameters of temperature,fiber content and slump values were introduced the artificial bee colony optimization and conventional back propagation algorithms.Training and the testing results of the corresponding models showed that artificial neural networks trained with the artificial bee colony optimization algorithm have remarkable potential for the prediction of modulus of rupture values and this method can be used as a preliminary decision criterion for quality check of the fabricated products. 展开更多
关键词 Neural network glass fiber reinforced concrete glass fiber
下载PDF
Spalling and Mechanical Properties of Fiber Reinforced High-performance Concrete Subjected to Fire 被引量:2
12
作者 董香军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期743-749,共7页
Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC).... Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC). At the same time, the temperature-increasing velocity and constrained conditions of concrete element also play significant roles in spalling. Steel fibers cannot reduce the risk of spalling, although they have obvious beneficial effects on the mechanical properties of concrete before and after exposure to fire. Polypropylene (PP) fibers are very useful in preventing HPC from spalling, however, they have negative effects on the strengths. By using hybrid fibers (steel fibers+PP fibers), both good anti-spalling performance and improved mechanical properties come true, which may provide necessary safe guarantee for the rescue work and structure repair after fire disaster. 展开更多
关键词 fiber reinforced high-performance concrete (FRHPC) FIRE SPALLING compressive strength flexural toughness
下载PDF
Experimental Investigation on the Mechanical Properties of Natural Fiber Reinforced Concrete 被引量:1
13
作者 Ismail Shah Jing Li +2 位作者 Shengyuan Yang Yubo Zhang Aftab Anwar 《Journal of Renewable Materials》 SCIE EI 2022年第5期1307-1320,共14页
Recently,addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials.This is because natural fibers are much cheaper and locally available,as compare to s... Recently,addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials.This is because natural fibers are much cheaper and locally available,as compare to synthetic fibers.Keeping in view,this current research conducted mainly focuses on the static properties of hybridized(sisal/coir),sisal and coir fiber-reinforced concrete.Two types of natural fibers sisal and coir were used in the experiment with different lengths of 10,20 and 30 mm and various natural fiber concentrations of 0.5%,1.0%,and 1.5%by mass of cement,to investigate the static properties of sisal fiber reinforced concrete(SFRC),coir fiber reinforced concrete(CFRC)and hybrid fiber reinforced concrete(HFRC).The results indicate that HFRC has increased the compressive strength up to 35.98%with the length of 20 mm and with 0.5%concentration,while the CFRC and SFRC with the length of 10 mm and with 1%concentration have increased the compressive strength up to 33.94%and 24.86%,respectively.On another hand,the split tensile strength was increased by HFRC with the length of 20 mm and with 1%concentration,CFRC with the length of 10 mm and with 1.5%concentration,and SFRC with the length of 30 mm and with 1%concentration have increased up to 25.48%,24.56%and 11.80%,respectively,while the HFRC with the length of 20 mm and with 0.5%concentration has increased the compressive strength of concrete but has decreased the split tensile strength up to 2.28%compared to PC.Overall,using the HFRC with the length of 20 mm and with 1%concentration provide the maximum output in terms of split tensile strength. 展开更多
关键词 Sisal fiber reinforced concrete coir fiber reinforced concrete hybrid fibers compressive and tensile strength
下载PDF
Charactersitics of Stress-strain Curve of High Strength Steel Fiber Reinforced Concrete under Uniaxial Tension 被引量:1
14
作者 杨萌 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期132-137,共6页
A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinfo... A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction. 展开更多
关键词 steel fiber reinforced concrete high strength uniaxial tension soften characteristics stress-strain curve
下载PDF
Structural Behavior of Continuous Prestressed Steel Fiber Reinforced High Strength Concrete Beam 被引量:2
15
作者 刘海波 向天宇 赵人达 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期37-45,共9页
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre... The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design. 展开更多
关键词 High strength concrete Steel fiber reinforced concrete Prestressed concrete Continuous beam
下载PDF
Flexural Fatigue Behavior of Layered Hybrid Fiber Reinforced Concrete 被引量:1
16
作者 王佶 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期560-563,共4页
In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress... In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress levels was simulated using the two-parameter Weibull distribution. Furthermore, both single- logarithmic and double-logarithmic regressive equations of various reliabilities were derived. It is evident that LHFRC gets the advantage of longer fatigue life over common concrete. 展开更多
关键词 layered hybrid fiber reinforced concrete(LHFRC) flexural intensity fatigue test fatigue equationion
下载PDF
Long-term Behavior of Fiber Reinforced Concrete Exposed to Sulfate Solution Cycling in Drying-immersion 被引量:2
17
作者 耿永娟 金祖权 +2 位作者 HOU Baorong ZHAO Tiejun GAO Song 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期875-881,共7页
The damage process and corrosion ion distribution in concrete, which was exposed to 60 and 170 drying-immersion cycles of sulfate solution, were systematically investigated. The effects of plain concrete, plain concre... The damage process and corrosion ion distribution in concrete, which was exposed to 60 and 170 drying-immersion cycles of sulfate solution, were systematically investigated. The effects of plain concrete, plain concrete mixed with 4 and 8 kg/m^3 modified PP fiber and high-performance concrete(HPC) mixed with 0.8 kg/m^3 fine PP fiber on the damage process were also studied. The experimental results showed that thenarditeinduced surface scaling, as well as gypsum-and ettringite-induced cracks, were the main degradation forms of concrete under attack of sulfate solution and drying–immersion cycles. The relative dynamic modulus of elasticity of concrete initially increased, then reached stability and finally decreased to failure. The sulfate diffusion coefficients of plain and HPC were 10^(-12) and 10^(-13) m^2/s, respectively. The concentration of sodium ion increased with depth, then maintained stability and finally decreased rapidly with concrete depth. The content of calcium ion on the concrete surface was 110%-150% of that in the interior of specimens. Although fiber worsened the surface scaling of concrete, better resistance capacity of sulfate ion penetration into concrete was observed in plain concrete with 4 kg/m^3 modified PP fiber and HPC. 展开更多
关键词 fiber reinforced concrete sulfateion damage diffusion coefficient drying-immersion cycles
下载PDF
CT Image-based Analysis on the Defect of Polypropylene Fiber Reinforced High-Strength Concrete at High Temperatures 被引量:2
18
作者 杜红秀 JIANG Yu +1 位作者 LIU Gaili YAN Ruizhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期898-903,共6页
With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image buildi... With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance. 展开更多
关键词 high-strength concrete polypropylene fiber high temperature X-ray computed tomography(CT) technology defect rate
下载PDF
Properties and Mechanism on Flexural Fatigue of Polypropylene Fiber Reinforced Concrete Containing Slag 被引量:2
19
作者 张慧莉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期533-540,共8页
Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag pr... Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag proportions were considered.An experiment was conducted to obtain the fatigue lives at three stress levels in 20 Hz frequency and at a constant stress level of 0.59 in four frequency respectively.Mechanism and evaluation were investigated based on the experimental data.Fatigue life span models were established.The results show that the addition of polypropylene fibers improves the flexural fatigue cumulative strength and fatigue life span.It is proposed that the slag particles and hydrated products improve Interfacial Transition Zone(ITZ)structure and benefit flexural fatigue performance.A composite reinforce effect is found with the incorporation of slag and polypropylene fibers.The optimum mixture contents 55%slag with 0.6%polypropylene fiber for the cumulative fatigue stress.Fatigue properties are decreased as the stress level increasing,the higher frequency reduces the fatigue strength more than lower frequency at a constant stress level. 展开更多
关键词 concrete flexural fatigue properties mechanism polypropylene fibers ground granulated blast furnace slag(GGBFS) SEM
下载PDF
Experimental Study on Electric Properties of Carbon Fiber Reinforced Concrete
20
作者 张滇军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期546-550,共5页
According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber... According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber reinforced concrete and curing age using the two-probe method. Then the effect of insulative area, location and quantity on DC resistance of carbon fiber reinforced concrete was investigated at different curing age with analysis of hydration. The results suggest that DC resistance increases greatly with its curing age, which illustrates the relationship like Gaussian curve. In every curing ages the electric capability of carbon fiber reinforced concrete weakenes with the increase of insulative area. In same curing ages, section and insulative area, the more the quantity of insulation, the stronger the conductibility. The insulative location in optimal position can only result in optimal conductibility. 展开更多
关键词 carbon fiber reinforced concrete(CFRC) RESISTANCE curing age insulative area insulative location insulative quantity
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部