Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fibe...Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fiber coupling. In this paper, we verified a new adaptive-optic device named adaptive fiber coupler (AFC) which could compensate angular jitters and improve the SMF coupling efficiency in some degree. Experiments of SMF coupling under the angular jitter situation using AFC have been achieved. Stochastic parallel gradient descent (SPGD) algorithm is employed as the control strategy, of which the iteration rate is 625 Hz. In closed loop, the coupling efficiency keeps above 65% when angular errors are below 80/3tad. The compensation bandwidth is 35 Hz at sine-jitter of 15 ~rad amplitude with average coupling efficiency of above 60%. Also, experiments with simulated turbulence have been studied. The average coupling efficiency increases from 31.97% in open loop to 61.33% in closed loop, and mean square error (MSE) of coupling efficiency drops from 7.43% to 1.75%.展开更多
We consider a fiber coupled cavity array. Each cavity is doped with a single two-level atom. By treating the atom-cavity systems as combined polaritonie qubits, we can transform it into a polaritonic qubit-qubit array...We consider a fiber coupled cavity array. Each cavity is doped with a single two-level atom. By treating the atom-cavity systems as combined polaritonie qubits, we can transform it into a polaritonic qubit-qubit array in the dispersive regime. We show that the four fiber coupled cavity open chain and ring can both generate the four qubit W state and cluster state, and can both transfer one and two qubit arbitrary states. We also discuss the dynamical behaviors of the four fiber coupled cavity array with unequal couplings.展开更多
A piece of multimode optical fiber with a low num er ical aperture (NA) is used as an inexpensive microlens to collimate the output r adiation of a laser diode bar in the high numerical aperture (NA) direction.The em...A piece of multimode optical fiber with a low num er ical aperture (NA) is used as an inexpensive microlens to collimate the output r adiation of a laser diode bar in the high numerical aperture (NA) direction.The emissions of the laser diode bar are coupled into multimode fiber array.The radi ation from individual ones of emitter regions is optically coupled into individu al ones of fiber array.Total coupling efficiency and fiber output power are 75% and 15W,respectively.展开更多
The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high ...The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high power density is achieved.The power density is up to 3 6×104W/cm2 and the coupling efficiency is 70%.The extreme divergence and the astigmatism of high power LDs require the optics with complex lens structures and high performance.A double-curved lens with two crossed cylindrical lenses structured on both sides of the glass substrate is used in the coupling system.展开更多
According to the principle of choosing the light source in the fiber optic sensing measurement,semiconductor laser is used as the light source of fiber optic sensor and single-mode fiber is used as the tail fiber of l...According to the principle of choosing the light source in the fiber optic sensing measurement,semiconductor laser is used as the light source of fiber optic sensor and single-mode fiber is used as the tail fiber of light source. Based on optical design software Zemax’s pure non-sequential components,a coupling system of semiconductor laser and single-mode fiber is designed. By analyzing the beam characteristics of the semiconductor laser and the coupled mode theory of semiconductor laser and single-mode fiber,the combined lens consists of a ball lens and a collimating lens for the purpose of improving the coupling efficiency and adjusting tolerance. The simulation results show that the coupling efficiency can reach about 78% by using one million ray traces on non-sequential components,while the experimental test result is 69.11%,accordingly,the reasons for the difference between the experiment and the simulation results are analyzed.展开更多
The theoretical investigation of the coupling efficiency of a laser diode to a single mode fiber via a hemispherical lens on the tip of the tapered fiber in the presence of possible transverse offset and angular misma...The theoretical investigation of the coupling efficiency of a laser diode to a single mode fiber via a hemispherical lens on the tip of the tapered fiber in the presence of possible transverse offset and angular mismatch is reported.Without the misalignment,coupling efficiency increases with the decreasing of taper length.With the misalignment,this relation is that the coupling efficiency decreases with each kind of offset.展开更多
The side-coupler of angle polished method, using angle-polished multimode fiber and optical adhesive, is used to efficiently pump an Yb-doped double-clad fiber laser. The maximum coupling efficiency of 78.6% is achiev...The side-coupler of angle polished method, using angle-polished multimode fiber and optical adhesive, is used to efficiently pump an Yb-doped double-clad fiber laser. The maximum coupling efficiency of 78.6% is achieved by the side-coupler for a multimode fiber with a circular core of 200μm and a double-clad fiber with a 350/400μm D-shaped inner cladding. While laser diodes (LDs) with three side-couplers are simultaneously used as pump sources, maximum output power of 1.38 W and slope efficiency of 48.9% are demonstrated in the fiber laser system.展开更多
At liquid-nitrogen temperature, at 10-kHz pulse repetition rate, Q-switched 36-ns pulses with average output power of 4 W at 2.05 μm and 4.5-W continuous wave output power with a total optical-optical conversion effi...At liquid-nitrogen temperature, at 10-kHz pulse repetition rate, Q-switched 36-ns pulses with average output power of 4 W at 2.05 μm and 4.5-W continuous wave output power with a total optical-optical conversion efficiency of 30%, were achieved from a 6% Tm, 0.5% Ho:YLiF4 laser. This laser was end-pumped by a fiber-coupled laser diode emitting up to 15 W around 792 nm. The 1-m-long optical fiber carrying the pump radiation has a core diameter of 700 μm with a numerical aperture of 0.22.展开更多
A polarization-maintained coupled optoelectronic oscillator(COEO) with its performance significantly improved by a short-length unpumped erbium-doped fiber(EDF) is reported and experimentally investigated.A 10 GHz...A polarization-maintained coupled optoelectronic oscillator(COEO) with its performance significantly improved by a short-length unpumped erbium-doped fiber(EDF) is reported and experimentally investigated.A 10 GHz optical pulse train with a supermode suppression ratio of 61.8 d B and a 10 GHz radio frequency signal with a sidemode suppression ratio of 94 d B and a phase noise of-121.9 d Bc∕Hz at 10 k Hz offset are simultaneously generated. Thanks to saturable absorption of the 1 m unpumped EDF, which introduces relatively large cavity loss to the undesired modes and noise, the supermode suppression ratio and the phase noise are improved by 9.4 and 7.9 d B, respectively.展开更多
Tapered fibers with diameters ranging from 1 to 4 μm are widely used to excite the whispering-gallery(WG)modes of microcavities. Typically, the transmission spectrum of a WG cavity coupled to a waveguide around a res...Tapered fibers with diameters ranging from 1 to 4 μm are widely used to excite the whispering-gallery(WG)modes of microcavities. Typically, the transmission spectrum of a WG cavity coupled to a waveguide around a resonance assumes a Lorentzian dip morphology due to resonant absorption of the light within the cavity. In this paper, we demonstrate that the transmission spectra of a WG cavity coupled with an ultrathin fiber(500–700 nm)may exhibit both Lorentzian dips and peaks, depending on the gap between the fiber and the microcavity. By considering the large scattering loss of off-resonant light from the fiber within the coupling region, this phenomenon can be attributed to partially resonant light bypassing the lossy scattering region via WG modes, allowing it to be coupled both to and from the cavity, then manifesting as Lorentzian peaks within the transmission spectra.This implies the system could be implemented within a bandpass filter framework.展开更多
Using a fiber Bragg grating (FBG) and a Fabry-Perot cavity composed of two fiber Bragg gratings (FBGFP) as its frequency-selective components, a type of single frequency all-fiber ring laser permits oscillation only o...Using a fiber Bragg grating (FBG) and a Fabry-Perot cavity composed of two fiber Bragg gratings (FBGFP) as its frequency-selective components, a type of single frequency all-fiber ring laser permits oscillation only on one longitudinal mode of the main cavity without modehopping while the cavity length can be up to tens of meters. The salient feature is due to the single narrowband resonance of the FBGFP filter. Such a fiber ring laser is achieved experimentally, and the laser mode is limited inside the single resonance of the FBGFP.展开更多
A Galerkin's method-based numerical procedure is extended to obtain the modal field distribution of multicore photonic crystal fibers for the first time to our knowledge, which can reveal how the air hole size inf...A Galerkin's method-based numerical procedure is extended to obtain the modal field distribution of multicore photonic crystal fibers for the first time to our knowledge, which can reveal how the air hole size influences the mode coupling and how the coupling strength varies with wavelength. These results will be helpful in the future design of multicore photonic crystal fibers with proper guidance properties.展开更多
Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced pol...Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride)(PVDF) composite membrane(GFRP-CM). The factors considered for experimental design were the UV(ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0–0.25 wt.%,solvent of N-Dimethylacetamide(DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy(FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance(FTIR-ATR) and energy dispersive X-ray spectroscopy(EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM.展开更多
The coupling between guided optical waves in magneto-optic fiber Bragg gratings (MFBGs) with linear birefringence is investigated using the eigen-mode and coupled-mode approaches. The relationship between the polari...The coupling between guided optical waves in magneto-optic fiber Bragg gratings (MFBGs) with linear birefringence is investigated using the eigen-mode and coupled-mode approaches. The relationship between the polarization-dependent loss (PDL) and the eigen states of polarization (SOPs) in the MFBGs is discussed. Only the MFBCs with low linear birefringence are applied to the peak PDL-based magnetic field measurement, after which the linear dynamic range is determined using the relative magnitude of linear and magnetically induced circular birefringence. In this letter, a theoretical model is presented to explain the experimental results and help develop novel MFBG-based devices.展开更多
Integrated diffractive optical mode converter, consisting of a diffractive optical element (DOE) and a slab waveguide, is used for fiber-to-waveguide coupling. The phase of the DOE is generally designed by optimizatio...Integrated diffractive optical mode converter, consisting of a diffractive optical element (DOE) and a slab waveguide, is used for fiber-to-waveguide coupling. The phase of the DOE is generally designed by optimization algorithm. In this paper, the precise design, a new method with one more restrictive way, is adopted to design the diffractive optical mode converter for fiber-to-waveguide coupling. Through this method, the intensity of any point on the output plane is fully filled with the required demand. Compared with what previously published, the coupling loss of the precise designed converter is lower.展开更多
Two-dimensional apodized grating couplers are proposed with grating grooves realized by a series of nano- rectangles, with the feasibility of digital tailoring the equivalent refractive index of each groove in order t...Two-dimensional apodized grating couplers are proposed with grating grooves realized by a series of nano- rectangles, with the feasibility of digital tailoring the equivalent refractive index of each groove in order to obtain the Gaussian output diffractive mode in order to enhance the coupling efficiency to the optical fiber. According to the requirement of leakage factor distribution for a Gaussian output profile, the corresponding effective re- fractive index of the grating groove, duty cycle, and period are designed according to the equivalent medium theory. The peak coupling efficiency of 93.1% at 1550 nm and 3 dB bandwidth of 82 nm are achieved.展开更多
In this paper, laser frequency-double and passive Q-switching are studied. The optimum coupling at endpump and optimum design of resonator are also investigated. The maximum output power of TEMoo is 1.68 W at 1.06-μm...In this paper, laser frequency-double and passive Q-switching are studied. The optimum coupling at endpump and optimum design of resonator are also investigated. The maximum output power of TEMoo is 1.68 W at 1.06-μm wavelength. Optic-optic conversion efficiency is 48.6%, and the slope efficiency is 56.3%. The maximum output of greeh light is 0.235 W. The smallest pulse-width of green light is 27.42 ns, optic-optic conversion efficiency of green light is 7%, and beam quality factor M^2 〈 1.2. Thermal lens effect is discussed.展开更多
Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality...Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2-str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.展开更多
As standard concepts for precision positioning within a machine reach their limits with increasing measurement volumes,inverse concepts are a promising approach for addressing this problem.The inverse principle entail...As standard concepts for precision positioning within a machine reach their limits with increasing measurement volumes,inverse concepts are a promising approach for addressing this problem.The inverse principle entails other limitations,as for high-precision positioning of a sensor head within a large measurement volume,three four-beam interferometers are required in order to measure all necessary translations and rotations of the sensor head and reconstruct the topography of the reference system consisting of fixed mirrors in the x-,y-,and z-directions.We present the principle of a passive heterodyne laser interferometer with consequently separated beam paths for the individual heterodyne frequencies.The beam path design is illustrated and described,as well as the design of the signal-processing and evaluation algorithm,which is implemented using a System-On-a-Chip with an integrated FPGA,CPU,and A/D converters.A streamlined bench-top optical assembly was set up and measurements were carried out to investigate the remaining non-linearities.Additionally,reference measurements with a commercial homodyne interferometer were executed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61205069).
文摘Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fiber coupling. In this paper, we verified a new adaptive-optic device named adaptive fiber coupler (AFC) which could compensate angular jitters and improve the SMF coupling efficiency in some degree. Experiments of SMF coupling under the angular jitter situation using AFC have been achieved. Stochastic parallel gradient descent (SPGD) algorithm is employed as the control strategy, of which the iteration rate is 625 Hz. In closed loop, the coupling efficiency keeps above 65% when angular errors are below 80/3tad. The compensation bandwidth is 35 Hz at sine-jitter of 15 ~rad amplitude with average coupling efficiency of above 60%. Also, experiments with simulated turbulence have been studied. The average coupling efficiency increases from 31.97% in open loop to 61.33% in closed loop, and mean square error (MSE) of coupling efficiency drops from 7.43% to 1.75%.
基金Supported by National Natural Science Foundation of China under Grant No. 10974016
文摘We consider a fiber coupled cavity array. Each cavity is doped with a single two-level atom. By treating the atom-cavity systems as combined polaritonie qubits, we can transform it into a polaritonic qubit-qubit array in the dispersive regime. We show that the four fiber coupled cavity open chain and ring can both generate the four qubit W state and cluster state, and can both transfer one and two qubit arbitrary states. We also discuss the dynamical behaviors of the four fiber coupled cavity array with unequal couplings.
文摘A piece of multimode optical fiber with a low num er ical aperture (NA) is used as an inexpensive microlens to collimate the output r adiation of a laser diode bar in the high numerical aperture (NA) direction.The emissions of the laser diode bar are coupled into multimode fiber array.The radi ation from individual ones of emitter regions is optically coupled into individu al ones of fiber array.Total coupling efficiency and fiber output power are 75% and 15W,respectively.
文摘The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high power density is achieved.The power density is up to 3 6×104W/cm2 and the coupling efficiency is 70%.The extreme divergence and the astigmatism of high power LDs require the optics with complex lens structures and high performance.A double-curved lens with two crossed cylindrical lenses structured on both sides of the glass substrate is used in the coupling system.
基金Youth Science and Technology Research Foundation of Shanxi Province(No.2015021104)Programs for Science and Technology Development of Shanxi Province(No.201703D121028-2)
文摘According to the principle of choosing the light source in the fiber optic sensing measurement,semiconductor laser is used as the light source of fiber optic sensor and single-mode fiber is used as the tail fiber of light source. Based on optical design software Zemax’s pure non-sequential components,a coupling system of semiconductor laser and single-mode fiber is designed. By analyzing the beam characteristics of the semiconductor laser and the coupled mode theory of semiconductor laser and single-mode fiber,the combined lens consists of a ball lens and a collimating lens for the purpose of improving the coupling efficiency and adjusting tolerance. The simulation results show that the coupling efficiency can reach about 78% by using one million ray traces on non-sequential components,while the experimental test result is 69.11%,accordingly,the reasons for the difference between the experiment and the simulation results are analyzed.
文摘The theoretical investigation of the coupling efficiency of a laser diode to a single mode fiber via a hemispherical lens on the tip of the tapered fiber in the presence of possible transverse offset and angular mismatch is reported.Without the misalignment,coupling efficiency increases with the decreasing of taper length.With the misalignment,this relation is that the coupling efficiency decreases with each kind of offset.
文摘The side-coupler of angle polished method, using angle-polished multimode fiber and optical adhesive, is used to efficiently pump an Yb-doped double-clad fiber laser. The maximum coupling efficiency of 78.6% is achieved by the side-coupler for a multimode fiber with a circular core of 200μm and a double-clad fiber with a 350/400μm D-shaped inner cladding. While laser diodes (LDs) with three side-couplers are simultaneously used as pump sources, maximum output power of 1.38 W and slope efficiency of 48.9% are demonstrated in the fiber laser system.
基金This work was supported by the Scientific Research Foundation of Harbin Institute of Technology.
文摘At liquid-nitrogen temperature, at 10-kHz pulse repetition rate, Q-switched 36-ns pulses with average output power of 4 W at 2.05 μm and 4.5-W continuous wave output power with a total optical-optical conversion efficiency of 30%, were achieved from a 6% Tm, 0.5% Ho:YLiF4 laser. This laser was end-pumped by a fiber-coupled laser diode emitting up to 15 W around 792 nm. The 1-m-long optical fiber carrying the pump radiation has a core diameter of 700 μm with a numerical aperture of 0.22.
基金supported by the National Natural Science Foundation of China(No.61422108)the Natural Science Foundation of Jiangsu Province(No.BK20160082)+1 种基金the Jiangsu Provincial Program for High-level Talents in Six Areas(No.DZXX-030)the Fundamental Research Funds for Central Universities(Nos.NE2017002 and NS2016037)
文摘A polarization-maintained coupled optoelectronic oscillator(COEO) with its performance significantly improved by a short-length unpumped erbium-doped fiber(EDF) is reported and experimentally investigated.A 10 GHz optical pulse train with a supermode suppression ratio of 61.8 d B and a 10 GHz radio frequency signal with a sidemode suppression ratio of 94 d B and a phase noise of-121.9 d Bc∕Hz at 10 k Hz offset are simultaneously generated. Thanks to saturable absorption of the 1 m unpumped EDF, which introduces relatively large cavity loss to the undesired modes and noise, the supermode suppression ratio and the phase noise are improved by 9.4 and 7.9 d B, respectively.
基金Okinawa Institute of Science and Technology Graduate University(OIST)
文摘Tapered fibers with diameters ranging from 1 to 4 μm are widely used to excite the whispering-gallery(WG)modes of microcavities. Typically, the transmission spectrum of a WG cavity coupled to a waveguide around a resonance assumes a Lorentzian dip morphology due to resonant absorption of the light within the cavity. In this paper, we demonstrate that the transmission spectra of a WG cavity coupled with an ultrathin fiber(500–700 nm)may exhibit both Lorentzian dips and peaks, depending on the gap between the fiber and the microcavity. By considering the large scattering loss of off-resonant light from the fiber within the coupling region, this phenomenon can be attributed to partially resonant light bypassing the lossy scattering region via WG modes, allowing it to be coupled both to and from the cavity, then manifesting as Lorentzian peaks within the transmission spectra.This implies the system could be implemented within a bandpass filter framework.
基金This work was supported by National Science Fund for Distinguished Young Scholars of China (Project 60125513)the Jiangsu Province Natural Science Foundation of China (No. BK2004207).
文摘Using a fiber Bragg grating (FBG) and a Fabry-Perot cavity composed of two fiber Bragg gratings (FBGFP) as its frequency-selective components, a type of single frequency all-fiber ring laser permits oscillation only on one longitudinal mode of the main cavity without modehopping while the cavity length can be up to tens of meters. The salient feature is due to the single narrowband resonance of the FBGFP filter. Such a fiber ring laser is achieved experimentally, and the laser mode is limited inside the single resonance of the FBGFP.
基金This work was supported by the National Natural Science Foundation of China under Grant NO. 60278003 and the National Key Basic Research Special Foundation of China under Grant No.G1999075201,
文摘A Galerkin's method-based numerical procedure is extended to obtain the modal field distribution of multicore photonic crystal fibers for the first time to our knowledge, which can reveal how the air hole size influences the mode coupling and how the coupling strength varies with wavelength. These results will be helpful in the future design of multicore photonic crystal fibers with proper guidance properties.
基金supported by the financial support of the National Natural Science Foundation of China (No. 51278483)the Institute of Chinese Academy of Sciences in cooperation projects (No. ZNGZ2011023)the Daqi Technology of Beijing Co. Ltd. (No. 04F0261601)
文摘Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride)(PVDF) composite membrane(GFRP-CM). The factors considered for experimental design were the UV(ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0–0.25 wt.%,solvent of N-Dimethylacetamide(DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy(FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance(FTIR-ATR) and energy dispersive X-ray spectroscopy(EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM.
基金supported by the National "863" Program of China (No.2009AA01Z216)the Program for New Century Excellent Talents in University (NCET)
文摘The coupling between guided optical waves in magneto-optic fiber Bragg gratings (MFBGs) with linear birefringence is investigated using the eigen-mode and coupled-mode approaches. The relationship between the polarization-dependent loss (PDL) and the eigen states of polarization (SOPs) in the MFBGs is discussed. Only the MFBCs with low linear birefringence are applied to the peak PDL-based magnetic field measurement, after which the linear dynamic range is determined using the relative magnitude of linear and magnetically induced circular birefringence. In this letter, a theoretical model is presented to explain the experimental results and help develop novel MFBG-based devices.
文摘Integrated diffractive optical mode converter, consisting of a diffractive optical element (DOE) and a slab waveguide, is used for fiber-to-waveguide coupling. The phase of the DOE is generally designed by optimization algorithm. In this paper, the precise design, a new method with one more restrictive way, is adopted to design the diffractive optical mode converter for fiber-to-waveguide coupling. Through this method, the intensity of any point on the output plane is fully filled with the required demand. Compared with what previously published, the coupling loss of the precise designed converter is lower.
基金supported by the National Natural Science Foundation of China(Nos.61222501 and 61335004)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20111103110019)
文摘Two-dimensional apodized grating couplers are proposed with grating grooves realized by a series of nano- rectangles, with the feasibility of digital tailoring the equivalent refractive index of each groove in order to obtain the Gaussian output diffractive mode in order to enhance the coupling efficiency to the optical fiber. According to the requirement of leakage factor distribution for a Gaussian output profile, the corresponding effective re- fractive index of the grating groove, duty cycle, and period are designed according to the equivalent medium theory. The peak coupling efficiency of 93.1% at 1550 nm and 3 dB bandwidth of 82 nm are achieved.
基金This work was supported by the Natural Science Foundation of Anhui under Grant No. 01042403
文摘In this paper, laser frequency-double and passive Q-switching are studied. The optimum coupling at endpump and optimum design of resonator are also investigated. The maximum output power of TEMoo is 1.68 W at 1.06-μm wavelength. Optic-optic conversion efficiency is 48.6%, and the slope efficiency is 56.3%. The maximum output of greeh light is 0.235 W. The smallest pulse-width of green light is 27.42 ns, optic-optic conversion efficiency of green light is 7%, and beam quality factor M^2 〈 1.2. Thermal lens effect is discussed.
文摘Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2-str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.
基金funded by the Deutsche Forschungsgemeinschaft(DFG)under contract 279458870.
文摘As standard concepts for precision positioning within a machine reach their limits with increasing measurement volumes,inverse concepts are a promising approach for addressing this problem.The inverse principle entails other limitations,as for high-precision positioning of a sensor head within a large measurement volume,three four-beam interferometers are required in order to measure all necessary translations and rotations of the sensor head and reconstruct the topography of the reference system consisting of fixed mirrors in the x-,y-,and z-directions.We present the principle of a passive heterodyne laser interferometer with consequently separated beam paths for the individual heterodyne frequencies.The beam path design is illustrated and described,as well as the design of the signal-processing and evaluation algorithm,which is implemented using a System-On-a-Chip with an integrated FPGA,CPU,and A/D converters.A streamlined bench-top optical assembly was set up and measurements were carried out to investigate the remaining non-linearities.Additionally,reference measurements with a commercial homodyne interferometer were executed.