期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Strigolactones modulate cotton fiber elongation and secondary cell wall thickening 被引量:2
1
作者 Yunze Wen Peng He +3 位作者 Xiaohan Bai Huizhi Zhang Yunfeng Zhang Jianing Yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1850-1863,共14页
Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes ... Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture. 展开更多
关键词 STRIGOLACTONES fiber elongation secondary cell wall thickening COTTON
下载PDF
GhIQD10 interacts with GhCaM7 to control cotton fiber elongation via calcium signaling 被引量:1
2
作者 Fan Xu Li Wang +5 位作者 Jun Xu Qian Chen Caixia Ma Li Huang Guiming Li Ming Luo 《The Crop Journal》 SCIE CSCD 2023年第2期447-456,共10页
IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transiti... IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transition period of cotton fiber development,and GhIQD10-overexpression lines showed shorter fibers.GhIQD10 interacted with GhCaM7 and the interaction was inhibited by Ca^(2+).In in vitro ovule culture,Ca^(2+)rescued the shorter-fiber phenotype of GhIQD10-overexpression lines,which were insensitive to the Ca^(2+)channel inhibitor verapamil and the Ca^(2+)pool release channel blocker 2-aminoethoxydiphenyl borate.We conclude that GhIQD10 affects cotton fiber elongation via Ca^(2+)signaling by interacting with GhCaM7.Brassinosteroid(BR)biosynthesis and signaling genes were up-regulated in GhIQD10-overexpression lines.Fiber development in these lines was not affected by epibrassinolide or the BR biosynthesis inhibitor brassinozole,indicating that the influence of GhIQD10 on fiber elongation was not associated with BR. 展开更多
关键词 Cotton fiber elongation IQ67-domian protein CA^(2+) BRASSINOSTEROID
下载PDF
Fiber-specific increase of carotenoid content promotes cotton fiber elongation by increasing abscisic acid and ethylene biosynthesis
3
作者 Jianyan Zeng Dan Yao +17 位作者 Ming Luo Lingli Ding Yi Wang Xingying Yan Shu’e Ye Chuannan Wang Yiping Wu Jingyi Zhang Yaohua Li Lingfang Ran Yonglu Dai Yang Chen Fanlong Wang Hanyan Lai Nian Liu Nianjuan Fang Yan Pei Yuehua Xiao 《The Crop Journal》 SCIE CSCD 2023年第3期774-784,共11页
Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate lig... Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate light harvesting,and scavenge reactive oxygen species.Although carotenoids accumulate predominantly in rapidly elongating cotton fibers,their roles in cotton fiber development remain poorly understood.In this study,a fiber-specific promoter proSCFP was applied to drive the expression of GhOR1Del,a positive regulator of carotenoid accumulation,to upregulate the carotenoid level in cotton fiber in planta.Fiber length,strength,and fineness were increased in proSCFP:GhOR1Del transgenic cotton and abscisic acid(ABA)and ethylene contents were increased in elongating fibers.The ABA downstream regulator GhbZIP27a stimulated the expression of the ethylene synthase gene GhACO3 by binding to its promoter,suggesting that ABA promoted fiber elongation by increasing ethylene production.These findings suggest the involvement of carotenoids and ABA signaling in promoting cotton fiber elongation and provide a strategy for improving cotton fiber quality. 展开更多
关键词 Abscisic acid CAROTENOID Cotton fiber elongation ETHYLENE ORANGE gene
下载PDF
GhAlaRP, a cotton alanine rich protein gene, involves in fiber elongation process 被引量:1
4
作者 Shouhong Zhu Yanjun Li +6 位作者 Xinyu Zhang Feng Liu Fei Xue Yongshan Zhang Zhaosheng Kong Qian-Hao Zhu Jie Sun 《The Crop Journal》 SCIE CSCD 2021年第2期313-324,共12页
Fiber length is one of the most important quality parameters of cotton fibers.Transcriptomic analyses of developing cotton fibers have identified genes preferentially expressing in fiber elongation stage,but few have ... Fiber length is one of the most important quality parameters of cotton fibers.Transcriptomic analyses of developing cotton fibers have identified genes preferentially expressing in fiber elongation stage,but few have been functionally characterized.Here,on the basis of confirmation of the preferential expression profile of GhAlaRP(Gh_A09G1166 and Gh_D09G1172),an alanine rich protein gene,in the rapid elongating fibers,we investigated the role of GhAlaRP in fiber development by generating transgenic cottons with an increased or decreased expression level of GhAlaRP.Our results showed that the fiber length was consistently significantly shorter in both the GhAlaRP-RNAi lines and the alarp mutant generated by genome editing than in the control YZ-1.GhAlaRP was localized on plasma membrane,nucleus and endoplasmic reticulum.The yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that GhAlaRP co-expresses and interacts with GhAnnexin(Gh_D11G2184)and GhEXPA(Gh_A10G2323)that are involved in fiber elongation.Down-regulation of GhAlaRP co-suppressed the expression levels of GhAnnexin and GhEXPA.These results suggest a role of GhAlaRP in regulation of cotton fiber elongation,which could be achieved by regulating the functions of GhAnnexin and GhEXPA. 展开更多
关键词 AlaRP fiber elongation G.hirsutum Genome editing
下载PDF
Gossypium herbaceum Negative Mutant for Fiber Elongation a Useful Isoline for Identification of Genes for Fiber Elongation
5
作者 KATAGERI I S KHADI B M ANANDKUMA P REDDY V S VAMADEVAAH H M 《棉花学报》 CSCD 北大核心 2008年第S1期83-,共1页
Actin cytoskeleton plays an important role in cell morphogenesis in plants as demonstrated by pharmacological,biochemical,and genetic studies.The actin cytoskeleton may be involved in
关键词 Gossypium herbaceum Negative Mutant for fiber elongation a Useful Isoline for Identification of Genes for fiber elongation GENE
下载PDF
Cotton BLH1 and KNOX6 antagonistically modulate fiber elongation via regulation of linolenic acid biosynthesis
6
作者 Tingting Jia Huiqin Wang +4 位作者 Shiyan Cui Zihan Li Yongcui Shen Hongbin Li Guanghui Xiao 《Plant Communications》 SCIE CSCD 2024年第7期138-156,共19页
BEL1-LIKE HOMEODOMAIN(BLH)proteins are known to function in various plant developmental processes.However,the role of BLHs in regulating plant cell elongation is still unknown.Here,we identify a BLH gene,GhBLH1,that p... BEL1-LIKE HOMEODOMAIN(BLH)proteins are known to function in various plant developmental processes.However,the role of BLHs in regulating plant cell elongation is still unknown.Here,we identify a BLH gene,GhBLH1,that positively regulates fiber cell elongation.Combined transcriptomic and biochemical analyses reveal that GhBLH1 enhances linolenic acid accumulation to promote cotton fiber cell elongation by activating the transcription of GhFAD7A-1 via binding of the POX domain of GhBLH1 to the TGGA cis-element in the GhFAD7A-1 promoter.Knockout of GhFAD7A-1 in cotton significantly reduces fiber length,whereas overexpression of GhFAD7A-1 results in longer fibers.The K2 domain of GhKNOX6 directly interacts with the POX domain of GhBLH1 to form a functional heterodimer,which interferes with the transcriptional activation of GhFAD7A-1 via the POX domain of GhBLH1.Overexpression of GhKNOX6 leads to a significant reduction in cotton fiber length,whereas knockout of GhKNOX6 results in longer cotton fibers.An examination of the hybrid progeny of GhBLH1 and GhKNOX6 transgenic cotton lines provides evidence that GhKNOX6 negatively regulates GhBLH1-mediated cotton fiber elongation.Our results show that the interplay between GhBLH1 and GhKNOX6 modulates regulation of linolenic acid synthesis and thus contributes to plant cell elongation. 展开更多
关键词 cotton fiber BLH1 KNOX6 linolenic acid biosynthesis fiber cell elongation
原文传递
Targeted Lipidomics Studies Reveal that Linolenic Acid Promotes Cotton Fiber Elongation by Activating Phosphatidylinositol and Phosphatidylinositol Monophosphate Biosvnthesis 被引量:3
7
作者 Gao-Jun Liu Guang-Hui Xiao +4 位作者 Ning-Jing Liu Dan Liu Pei-Shuang Chen Yong-Mei Qin Yu-Xian Zhu 《Molecular Plant》 SCIE CAS CSCD 2015年第6期911-921,共11页
The membrane lipids from fast-elongating wild-type cotton (Gossypium hirsutum) fibers at 10 days post- anthesis, wild-type ovules with fiber cells removed, and ovules from the fuzzless-lintless mutant harvested at t... The membrane lipids from fast-elongating wild-type cotton (Gossypium hirsutum) fibers at 10 days post- anthesis, wild-type ovules with fiber cells removed, and ovules from the fuzzless-lintless mutant harvested at the same age, were extracted, separated, and quantified. Fiber cells contained significantly higher amounts of phosphatidylinositol (PI) than both ovule samples with PI 34:3 being the most predominant spe- cies. The genes encoding fatty acid desaturases (415GhFAD), PI synthase (PIS) and PI kinase (PIK) were expressed in a fiber-preferential manner. Further analysis of phosphatidylinositol monophosphate (PIP) indicated that elongating fibers contained four- to five-fold higher amounts of PIP 34:3 than the ovules. Exog- enously applied linolenic acid (C18:3), soybean L-α-PI, and PIPs containing PIP 34:3 promoted significant fiber growth, whereas a liver PI lacking the C18:3 moiety, linoleic acid, and PIP 36:2 were completely ineffec- tive. The growth inhibitory effects of carbenoxolone, 5-hydroxytryptamine, and wortmannin were reverted by C18:3, PI, or PIP, respectively, suggesting that PIP signaling is essential for fiber cell growth. Furthermore, cotton plants expressing virus-induced gene-silencing constructs that specifically suppressed Gh15FAD, GhPIS, or GhPIK expression, resulted in significantly short-fibered phenotypes. Our data provide the basis for in-depth studies on the roles of PI and PIP in mediating cotton fiber growth. 展开更多
关键词 Gossypium hirsutum fiber elongation mass spectrometry glycerophospholipid profiling phosphati-dylinositol phosphatidylinositol monophosphate
原文传递
GhKNL1 controls fiber elongation and secondary cell wall synthesis by repressing its downstream genes in cotton(Gossypium hirsutum) 被引量:2
8
作者 Yao Wang Yang Li +5 位作者 Si-Ying Gong Li-Xia Qin Xiao-Ying Nie Dong Liu Yong Zheng Xue-Bao Li 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第1期39-55,共17页
Cotton which produces natural fiber materials for the textile industry is one of the most important crops in the world. Class II KNOX proteins are often considered as transcription factors in regulating plant secondar... Cotton which produces natural fiber materials for the textile industry is one of the most important crops in the world. Class II KNOX proteins are often considered as transcription factors in regulating plant secondary cell wall(SCW) formation. However,the molecular mechanism of the KNOX transcription factor-regulated SCW synthesis in plants(especially in cotton) remains unclear in details so far. In this study, we show a cotton class II KNOX protein(Gh KNL1) as a transcription repressor functioning in fiber development. The Gh KNL1-silenced transgeniccotton produced longer fibers with thicker SCWs,whereas Gh KNL1 dominant repression transgenic lines displayed the opposite fiber phenotype, compared with controls. Further experiments revealed that Gh KNL1 could directly bind to promoters of Gh Ces A4-2/4-4/8-2 and Gh MYB46 for modulating cellulose synthesis during fiber SCW development in cotton. On the other hand, Gh KNL1 could also suppress expressions of Gh EXPA2 D/4 A-1/4 D-1/13 A through binding to their promoters for regulating fiber elongation of cotton. Taken together, these data revealed Gh KNL1 functions in fiber elongation and SCW formation by directly repressing expressions of its target genes related to cell elongation and cellulose synthesis. Thus, our data provide an effective clue for potentially improving fiber quality by genetic manipulation of Gh KNL1 in cotton breeding. 展开更多
关键词 cotton(Gossypium hirsutum) fiber elongation KNOX protein secondary cell wall(SCW)synthesis transcriptional regulation
原文传递
GhDET2,a Steroid 5alpha-reductase,Plays an Important Role in Cotton Fiber Cell Initiation and Elongation 被引量:1
9
作者 LUO Ming,XIAO Yue-hua,LI Xian-bi,LI De-mou,HOU Lei,HU Ming-yu,PEI Yan(Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture,Biotechnology Research Center,Southwest University,Chongqing 400716,China) 《棉花学报》 CSCD 北大核心 2008年第S1期130-,共1页
Cotton(Gossypium hirsutum L.) fibers,one of the most important natural raw materials for the textile industry,are highly elongated trichomes from epidermal cells of cotton ovules.Among the longest plant cells ever cha... Cotton(Gossypium hirsutum L.) fibers,one of the most important natural raw materials for the textile industry,are highly elongated trichomes from epidermal cells of cotton ovules.Among the longest plant cells ever characterized,cotton fiber is an ideal system for studying plant cell elongation. 展开更多
关键词 BRs GhDET2 a Steroid 5alpha-reductase Plays an Important Role in Cotton fiber Cell Initiation and elongation Cell
下载PDF
Biochemical Pathways That Are Important for Cotton Fiber Cell Elongation
10
作者 ZHU Yu-xian(The National Laboratory of Protein Engineering and Plant Genetic Engineering,Peking University,Beijing 100871,China) 《棉花学报》 CSCD 北大核心 2008年第S1期10-,共1页
The regulatory mechanism that controls the sustained cotton fiber cell elongation is gradually being elucidated by coupling genome-wide transcriptome profiling with systematic biochemical and physiological studies.Ver... The regulatory mechanism that controls the sustained cotton fiber cell elongation is gradually being elucidated by coupling genome-wide transcriptome profiling with systematic biochemical and physiological studies.Very long chain fatty acids(VLCFA),H2O2,and several types of plant 展开更多
关键词 Biochemical Pathways That Are Important for Cotton fiber Cell elongation CELL
下载PDF
Comparative Proteomic Analysis of the Fiber Elongating Process in Cotton 被引量:1
11
作者 LIU Jin-yuan,YANG Yi-wei,BIAN Shao-min(Laboratory of Molecular Biology,Department of Biological Sciences and Biotechnology,Tsinghua University,Beijing 100084,China) 《棉花学报》 CSCD 北大核心 2008年第S1期58-,共1页
A comparative proteomic analysis was performed to explore the mechanism of cell elongation in developing cotton fibers.The temporal changes of global proteomes at five representative
关键词 Comparative Proteomic Analysis of the fiber Elongating Process in Cotton
下载PDF
Isolation and Analysis of Expansins from the Gossypium barbadense Cotton Elongating Fiber
12
作者 TU Li-li,DENG Feng-lin,TAN Jia-fu,LI Yang,ZHANG Xian-long(National Key Laboratory of Crop Genetic Improvement,Huazhong Agricultural University,Wuhan,Hubei 430070,China) 《棉花学报》 CSCD 北大核心 2008年第S1期48-,共1页
Gossypium barbadense L.is one of the most valuable cotton species due to its silkiness,luster,long staple,and high strength.Transferring the excellent fiber traits from G.barbadense as the secondary gene pool to the w... Gossypium barbadense L.is one of the most valuable cotton species due to its silkiness,luster,long staple,and high strength.Transferring the excellent fiber traits from G.barbadense as the secondary gene pool to the widely cultivated G.hirsutum via traditional and molecular-aided selection 展开更多
关键词 Isolation and Analysis of Expansins from the Gossypium barbadense Cotton Elongating fiber
下载PDF
Molecular Cloning and Characterization of a β-Galactosidase Gene Expressed Preferentially in Cotton Fibers 被引量:3
13
作者 Heng-MuZHANG Jin-YuanLIU 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第2期223-232,共10页
β-galactosidases (EC 3.2.1.23) constitute a widespread family of enzymes in plants that is thought to be involved in metabolism of cell wall polysaccharides. We reported herein the isolation of a fulllength cDNA enco... β-galactosidases (EC 3.2.1.23) constitute a widespread family of enzymes in plants that is thought to be involved in metabolism of cell wall polysaccharides. We reported herein the isolation of a fulllength cDNA encoding a typical β-galactosidase protein, designated GhGal1 (Gossypium hirsutum L.galactosidase), of 843 amino acids with a predicted molecular mass of nearly 94.8 kDa. In addition to a glycosyl hydrolase family 35 domain and a putative signal peptide, an unusual characteristic of GhGal 1 is that, at the C-terminus of the enzyme, a domain was found that is structurally related to a sea urchin egg lectin (SUEL-lectin) with D-galactose- and L-rhamnose-binding domains. Based on results from Southern blot, we estimated that there would be two copies of the GhGal1 gene per haploid genome of G. hirsutum.The transcripts of GhGal1 were regulated spatially and temporally and were present in very high abundance at the elongation stage of the cotton fiber. The expression pattern suggests that the GhGal1 gene could be involved in metabolism of the primary cell wall. 展开更多
关键词 cotton fiber elongation β-galactosidase gene lectin-like motif.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部