This paper presents an efficient scheme for single-pixel imaging(SPI)utilizing a phase-controlled fiber laser array and an untrained deep neural network.The fiber lasers are arranged in a compact hexagonal structure a...This paper presents an efficient scheme for single-pixel imaging(SPI)utilizing a phase-controlled fiber laser array and an untrained deep neural network.The fiber lasers are arranged in a compact hexagonal structure and coherently combined to generate illuminating light fields.Through the utilization of high-speed electro-optic modulators in each individual fiber laser module,the randomly modulated fiber laser array enables rapid speckle projection onto the object of interest.Furthermore,the untrained deep neural network is incorporated into the image reconstructing process to enhance the quality of the reconstructed images.Through simulations and experiments,we validate the feasibility of the proposed method and successfully achieve high-quality SPI utilizing the coherent fiber laser array at a sampling ratio of 1.6%.Given its potential for high emitting power and rapid modulation,the SPI scheme based on the fiber laser array holds promise for broad applications in remote sensing and other applicable fields.展开更多
Two array waveguide grating (AWGs) based fiber ring lasers are experimentally demonstrated. Either of them achieves wavelength discrete tuning of 32 nm, or yields simultaneously lasing up to four channels with -7 dBm ...Two array waveguide grating (AWGs) based fiber ring lasers are experimentally demonstrated. Either of them achieves wavelength discrete tuning of 32 nm, or yields simultaneously lasing up to four channels with -7 dBm output power for each channel.展开更多
We propose and demonstrate a scheme to smooth and shape the on-target patterns in multimode fiber lasers, which includes expanding-collimating system and lens array (LA). A smooth pattern with flat-top and sharp-edg...We propose and demonstrate a scheme to smooth and shape the on-target patterns in multimode fiber lasers, which includes expanding-collimating system and lens array (LA). A smooth pattern with flat-top and sharp-edge profiles can be obtained with the irradiation nonuniformity decreasing significantly. We analyze the effects of the parameters such as defocus distance, the tilt angles, the number of the incident fiber lasers, and the diffraction-weakened LA on the uniformity irradiation of target by numerical simulations.展开更多
文摘This paper presents an efficient scheme for single-pixel imaging(SPI)utilizing a phase-controlled fiber laser array and an untrained deep neural network.The fiber lasers are arranged in a compact hexagonal structure and coherently combined to generate illuminating light fields.Through the utilization of high-speed electro-optic modulators in each individual fiber laser module,the randomly modulated fiber laser array enables rapid speckle projection onto the object of interest.Furthermore,the untrained deep neural network is incorporated into the image reconstructing process to enhance the quality of the reconstructed images.Through simulations and experiments,we validate the feasibility of the proposed method and successfully achieve high-quality SPI utilizing the coherent fiber laser array at a sampling ratio of 1.6%.Given its potential for high emitting power and rapid modulation,the SPI scheme based on the fiber laser array holds promise for broad applications in remote sensing and other applicable fields.
文摘Two array waveguide grating (AWGs) based fiber ring lasers are experimentally demonstrated. Either of them achieves wavelength discrete tuning of 32 nm, or yields simultaneously lasing up to four channels with -7 dBm output power for each channel.
基金supported by the National Natural Science Foundation of China under Grant No.11374285
文摘We propose and demonstrate a scheme to smooth and shape the on-target patterns in multimode fiber lasers, which includes expanding-collimating system and lens array (LA). A smooth pattern with flat-top and sharp-edge profiles can be obtained with the irradiation nonuniformity decreasing significantly. We analyze the effects of the parameters such as defocus distance, the tilt angles, the number of the incident fiber lasers, and the diffraction-weakened LA on the uniformity irradiation of target by numerical simulations.