In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical r...In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical reflected pulses are obtained from a single nanosecond pulse injected at the input due to the difference in lengths of the reference and test fibers. The lengths of the different optical fibers have been measured with this technique with high resolution and fast response time. The measured results show that, the proposed technique has a comparable performance with the well-known length measurement systems.展开更多
A measurement method of optical fiber length using timestamp technique is demonstrated. Based on IEEE1588 precise clock synchronization protocol, the principle that time delay asymmetry on two path results in synchr...A measurement method of optical fiber length using timestamp technique is demonstrated. Based on IEEE1588 precise clock synchronization protocol, the principle that time delay asymmetry on two path results in synchronization time deviation is used, and the difference between two-path delays could be deduced by measuring the synchronization time deviation reversely. Then the length of optical fiber on one path could be calculated if that on the other path is known Due to the fact that the path of Sync and Delay_Req message is symmetric, the optical pulse dispersion and the asymmetry of photoelectric detector performance on two paths are averaged by exchanging two optical fibers. The time difference between master and slave clocks is eliminated by sharing the same time base. At last, the lengths of two single-mode optical fibers are measured with the uncertainty of 0. 578 m for 3 227. 722 m and 0. 758 m for 25 491. 522 m, respectively. Thus this method has high precision and long range.展开更多
A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation be...A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation between the resonant wavelengths of the LPFG and MMFC since the resonant wavelengths of the LPFG and MMFC will shift in opposite directions when the surrounding RI changes. Experimental results show that the sensor possesses an enhanced sensitivity of 526.92nm/RIU in the RI range of 1.387-1.394 RIU. The response to the temperature is also discussed.展开更多
In this paper, we report a novel method for accurately measuring the photo-induced birefringence of photosensitive fiber by using Mach-Zehnder interferometer. The results indicate that the normalized birefringence can...In this paper, we report a novel method for accurately measuring the photo-induced birefringence of photosensitive fiber by using Mach-Zehnder interferometer. The results indicate that the normalized birefringence can attain 10-5.展开更多
A liquid modified photonic crystal fiber(PCF)integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1....A liquid modified photonic crystal fiber(PCF)integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1.48 refractive index liquids.The refractive index of the filled liquid is higher than that of background silica,which can not only support the transmitting rod modes but also the"liquid modified core"modes propagating between the PCF core and the liquid rods.Hence,the light propagating in the liquid modified core can be efficiently coupled into the satellite waveguides under the phase-matching conditions,resulting in a dramatic decrease of the resonant wavelength intensity.Furthermore,there is a multi-mode interference produced by modified core modes and rod modes.Such a compact(~0.91 cm)device integrated with an embedded coupler and interferometer is demonstrated for high-sensitivity simultaneous temperature(~14.72 nm∕℃)and strain(~13.01 pm∕με)measurement.展开更多
The group-delay dispersion of an optical fiber was measured with the time-of-flight method, using fingerprint-like characteristic spectra from a mode-locked fiber laser source. To determine the group-delay dispersion ...The group-delay dispersion of an optical fiber was measured with the time-of-flight method, using fingerprint-like characteristic spectra from a mode-locked fiber laser source. To determine the group-delay dispersion up to the fourth order, least-squares fitting was applied to the overall time waveform mapped on the time axis for the fingerprint-spectral broadband pulses through a long optical fiber. The analysis of all 4003 data points reduced statistical uncertainty, and provided second-, third-, and fourth-order dispersion with uncertainties of 0.02%, 0.4%, and 4%,respectively.展开更多
In this paper, we study an FLM-grating cavity WDM fiber laser with dynamic polarization compensation technique for maintaining the output polarization states. We observe the characteristics and obtain the optimal expe...In this paper, we study an FLM-grating cavity WDM fiber laser with dynamic polarization compensation technique for maintaining the output polarization states. We observe the characteristics and obtain the optimal experimental results.展开更多
Novel small Raman gain measurement method for installed fiber optic cables using a modulated pump light is proposed. We have demonstrated accurate Raman gain measurement in small Raman gain less than 1dB and we also m...Novel small Raman gain measurement method for installed fiber optic cables using a modulated pump light is proposed. We have demonstrated accurate Raman gain measurement in small Raman gain less than 1dB and we also measured Raman gain for the installed fiber optic cable by using average pumping power of about only 25mW.展开更多
A new type optical fiber sensor--Tip timing Sensor is introduced in this paper. It is mostly used in vibration measurement of turbine blade, which can realize real-time and non-contact measurement.
A novel distributed feedback(DFB) fiber laser sensor, which can measure acoustic and magnetic fields simultaneously, is proposed. The magnetic field can be measured by detecting the change of resonant frequency of t...A novel distributed feedback(DFB) fiber laser sensor, which can measure acoustic and magnetic fields simultaneously, is proposed. The magnetic field can be measured by detecting the change of resonant frequency of the fiber laser, and the acoustic pressure can be measured by detecting the phase shift of the fiber laser. Both of the signals can be simultaneously demodulated in the frequency domain without affecting each other. Experimental studies show that the acoustic pressure sensitivity of this sensor is about-130 d B(0 dB re 1 pm∕μPa) and the sensor has a good linearity with a magnetic field sensitivity of 0.57 Hz∕mT.展开更多
This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot ...This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot interferometers and fiber gratings.展开更多
In this Letter, an alternative solution is proposed and demonstrated for simultaneous measurement of axial strain and temperature. This sensor consists of two twisted points on a commercial single mode fiber introduce...In this Letter, an alternative solution is proposed and demonstrated for simultaneous measurement of axial strain and temperature. This sensor consists of two twisted points on a commercial single mode fiber introduced by flame-heated and rotation treatment. The fabrication process modifies the geometrical configuration and refractive index of the fiber. Different cladding modes are excited at the first twisted point, and part of them are coupled back to the fiber core at the second twisted point. Experimental results show distinct sensitivities of 34.9 pm/με with 49.23 pm/℃ and -36.19 pm/με with 62.99 pm/℃ for the two selected destructive interference wavelengths.展开更多
The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated mode...The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.展开更多
The effect of the vertical pipe length on the performance of a coal pipe splitter with a perpendicularly arranged upstream elbow was investigated experimentally employing a fiber optic measuring system. The upstream e...The effect of the vertical pipe length on the performance of a coal pipe splitter with a perpendicularly arranged upstream elbow was investigated experimentally employing a fiber optic measuring system. The upstream elbow and coal pipe splitter were installed in two perpendicular planes. Contours of dis- tributions of the particle concentration and size were obtained in different transverse sections. The experimental data show that the maximum/minimum concentration ratio in transverse sections A, B, and C decreased rapidly as the length of the vertical pipe increased. The left/right-leg average concentration ratio remained about 1, and a balanced split was thus achieved. With a perpendicularly arranged upstream elbow, the vertical pipe length had little effect on the splitter performance, which is beneficial for engineering design and convenient for industrial application.展开更多
文摘In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical reflected pulses are obtained from a single nanosecond pulse injected at the input due to the difference in lengths of the reference and test fibers. The lengths of the different optical fibers have been measured with this technique with high resolution and fast response time. The measured results show that, the proposed technique has a comparable performance with the well-known length measurement systems.
基金National Natural Science Foundation of China(No.61271120/F010508)National Science and Technology Support Program(No.2014BAK02BO2,No.2014BAK02BO5)National Science and Technology Major Projects(broadband wireless2015ZX03001011-002)
文摘A measurement method of optical fiber length using timestamp technique is demonstrated. Based on IEEE1588 precise clock synchronization protocol, the principle that time delay asymmetry on two path results in synchronization time deviation is used, and the difference between two-path delays could be deduced by measuring the synchronization time deviation reversely. Then the length of optical fiber on one path could be calculated if that on the other path is known Due to the fact that the path of Sync and Delay_Req message is symmetric, the optical pulse dispersion and the asymmetry of photoelectric detector performance on two paths are averaged by exchanging two optical fibers. The time difference between master and slave clocks is eliminated by sharing the same time base. At last, the lengths of two single-mode optical fibers are measured with the uncertainty of 0. 578 m for 3 227. 722 m and 0. 758 m for 25 491. 522 m, respectively. Thus this method has high precision and long range.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61327012 and 61505160the Natural Science Foundation of Shaanxi Province under Grant No 2016JQ6021the Shaanxi Key Laboratory of Optical Information Technology under Grant No OIT201601
文摘A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation between the resonant wavelengths of the LPFG and MMFC since the resonant wavelengths of the LPFG and MMFC will shift in opposite directions when the surrounding RI changes. Experimental results show that the sensor possesses an enhanced sensitivity of 526.92nm/RIU in the RI range of 1.387-1.394 RIU. The response to the temperature is also discussed.
基金Supported by the National "863" high technology project(2002AA313110)
文摘In this paper, we report a novel method for accurately measuring the photo-induced birefringence of photosensitive fiber by using Mach-Zehnder interferometer. The results indicate that the normalized birefringence can attain 10-5.
基金National Natural Science Foundation of China(NSFC)(61635007,61425007,61377090,61575128)Guangdong Science and Technology Department(2014A030308007,2014B050504010,2015B010105007,2015A030313541)+1 种基金Science and Technology Innovation Commission of Shenzhen(GJHZ20150313093755757,JCYJ20160520163134575,JCYJ20160427104925452)Pearl River Scholar Fellowships
文摘A liquid modified photonic crystal fiber(PCF)integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1.48 refractive index liquids.The refractive index of the filled liquid is higher than that of background silica,which can not only support the transmitting rod modes but also the"liquid modified core"modes propagating between the PCF core and the liquid rods.Hence,the light propagating in the liquid modified core can be efficiently coupled into the satellite waveguides under the phase-matching conditions,resulting in a dramatic decrease of the resonant wavelength intensity.Furthermore,there is a multi-mode interference produced by modified core modes and rod modes.Such a compact(~0.91 cm)device integrated with an embedded coupler and interferometer is demonstrated for high-sensitivity simultaneous temperature(~14.72 nm∕℃)and strain(~13.01 pm∕με)measurement.
基金partly supported by KAKENHI No. 15H03968 and No. 26610081 from JSPS, the Photon Frontier Network Program of MEXT, JST-SENTAN, and JST-CREST in Japanthe European Regional Development Fund+1 种基金the European Social Fundthe state budget of the Czech Republic (project HiLASE: CZ.1.05/2.1.00/01.0027, project Postdok: CZ.1.07/2.3.00/30.0057)
文摘The group-delay dispersion of an optical fiber was measured with the time-of-flight method, using fingerprint-like characteristic spectra from a mode-locked fiber laser source. To determine the group-delay dispersion up to the fourth order, least-squares fitting was applied to the overall time waveform mapped on the time axis for the fingerprint-spectral broadband pulses through a long optical fiber. The analysis of all 4003 data points reduced statistical uncertainty, and provided second-, third-, and fourth-order dispersion with uncertainties of 0.02%, 0.4%, and 4%,respectively.
文摘In this paper, we study an FLM-grating cavity WDM fiber laser with dynamic polarization compensation technique for maintaining the output polarization states. We observe the characteristics and obtain the optimal experimental results.
文摘Novel small Raman gain measurement method for installed fiber optic cables using a modulated pump light is proposed. We have demonstrated accurate Raman gain measurement in small Raman gain less than 1dB and we also measured Raman gain for the installed fiber optic cable by using average pumping power of about only 25mW.
文摘A new type optical fiber sensor--Tip timing Sensor is introduced in this paper. It is mostly used in vibration measurement of turbine blade, which can realize real-time and non-contact measurement.
基金supported by the Key R&D Program of China(No.2017YFB0405503)the Youth Innovation Promotion Association of CAS(No.2016106)
文摘A novel distributed feedback(DFB) fiber laser sensor, which can measure acoustic and magnetic fields simultaneously, is proposed. The magnetic field can be measured by detecting the change of resonant frequency of the fiber laser, and the acoustic pressure can be measured by detecting the phase shift of the fiber laser. Both of the signals can be simultaneously demodulated in the frequency domain without affecting each other. Experimental studies show that the acoustic pressure sensitivity of this sensor is about-130 d B(0 dB re 1 pm∕μPa) and the sensor has a good linearity with a magnetic field sensitivity of 0.57 Hz∕mT.
文摘This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot interferometers and fiber gratings.
基金supported by the National Natural Science Foundation of China(Nos.61775070 and 61275083)the Fundamental Research Funds for the Central Universities(No.2017KFYXJJ032)
文摘In this Letter, an alternative solution is proposed and demonstrated for simultaneous measurement of axial strain and temperature. This sensor consists of two twisted points on a commercial single mode fiber introduced by flame-heated and rotation treatment. The fabrication process modifies the geometrical configuration and refractive index of the fiber. Different cladding modes are excited at the first twisted point, and part of them are coupled back to the fiber core at the second twisted point. Experimental results show distinct sensitivities of 34.9 pm/με with 49.23 pm/℃ and -36.19 pm/με with 62.99 pm/℃ for the two selected destructive interference wavelengths.
基金supported by the Special Foundation for State Major Basic Research Program of China(Grant No.2011ZX04002-101)
文摘The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.
基金This work was supported by National Natural Science Foundation of China (51476137) and the National Basic Research Program of China (2015CB251501 ).
文摘The effect of the vertical pipe length on the performance of a coal pipe splitter with a perpendicularly arranged upstream elbow was investigated experimentally employing a fiber optic measuring system. The upstream elbow and coal pipe splitter were installed in two perpendicular planes. Contours of dis- tributions of the particle concentration and size were obtained in different transverse sections. The experimental data show that the maximum/minimum concentration ratio in transverse sections A, B, and C decreased rapidly as the length of the vertical pipe increased. The left/right-leg average concentration ratio remained about 1, and a balanced split was thus achieved. With a perpendicularly arranged upstream elbow, the vertical pipe length had little effect on the splitter performance, which is beneficial for engineering design and convenient for industrial application.