Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o...Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.展开更多
Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This pa...Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.展开更多
Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and i...Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.展开更多
This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumf...This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.展开更多
A new kind of fiber optic oxygen sensing material based on the fluorescence quenching of Ru(bpy)3Cl2 was prepared by the themo-polymerization method. The ruthenium dye was immobilized in N, N-methylene bisacrylamide...A new kind of fiber optic oxygen sensing material based on the fluorescence quenching of Ru(bpy)3Cl2 was prepared by the themo-polymerization method. The ruthenium dye was immobilized in N, N-methylene bisacrylamide(MBBA) polymer by physically trapping while MBBA was covalently crosslinked on the glass micro-beads by NaHSO3-O2-MnSO4 initiator system. The lock-in amplifyication technology was used for the detection of their sensing properties. The influences of indicator concentration, glass micro-beads diameter, post polymerization time, concentration and reaction time of glutaraldehyde on the properties of sensing materials were studied. To optimize the influencing factors to the sensing materials, the indicator concentration of 0.7 g/L, glass micro-beads diameter of 0.3 mm, post polymerization time of 5 h were achieved. The immobilization stability of ruthenium dye and the performance of the sensing materials were improved by the new polymerization system. An absolute detection limit of 3×10-6 (V/V) and the response time of 10 s were obtained. This kind of sensing materials has good stability and their life time is 2 years.展开更多
Aiming at some security problems in railway running and the application condition of existing technology, this paper studies some issues of using fiber optic sensing technology in railway security monitoring. Through ...Aiming at some security problems in railway running and the application condition of existing technology, this paper studies some issues of using fiber optic sensing technology in railway security monitoring. Through field experiment measuring the strain of the rail and analyzing the experiment data, the method of diagnosing the health condition of rail and wheel is investigated.展开更多
With the proposal of a“smart battery,”real-time sensing by rechargeable batteries has become progressively more important in both fundamental research and practical applications.However,many traditional sensing tech...With the proposal of a“smart battery,”real-time sensing by rechargeable batteries has become progressively more important in both fundamental research and practical applications.However,many traditional sensing technologies suffer from low sensitivity,large size,and electromagnetic interference problems,rendering them unusable in the harsh and complicated electrochemical environments of batteries.The optical sensor is an alternative approach to realize multiple-parameter,multiple-point measurements simultaneously.Thus,it has garnered significant attention.Through analyzing these measured parameters,the state of interest can be decoded to monitor a battery's health.This review summarizes current progress in optical sensing techniques for batteries with respect to various sensing parameters,discussing the current limitations of optical fiber sensors as well as directions for their future development.展开更多
This paperdetails experimental work done to quantify stress measurements made optically utilizing ordinary single mode optical fibers. Strain-induced changes of birefringence for ordinary single mode optical fiber res...This paperdetails experimental work done to quantify stress measurements made optically utilizing ordinary single mode optical fibers. Strain-induced changes of birefringence for ordinary single mode optical fiber responses are characterized against standard stress measurements in a well understand configuration. The experimental scheme for this work and the results are presented in detaial. In this paper, POssible applications for this transverse stress character of single mode fibers are also proposed.展开更多
The pandemic of respiratory diseases enlightened people that monitoring respiration has promising prospects in averting many fatalities by tracking the development of diseases.However,the response speed of current opt...The pandemic of respiratory diseases enlightened people that monitoring respiration has promising prospects in averting many fatalities by tracking the development of diseases.However,the response speed of current optical fiber sensors is still insufficient to meet the requirements of high-frequency respiratory detection during respiratory failure.Here,a scheme for a fast and stable tachypnea monitor is proposed utilizing a water-soluble C_(60)-Lys ion compound as functional material for the tracking of humidity change in the progression of breath.The polarization of C_(60)-Lys can be tuned by the ambient relative humidity change,and an apparent refractive index alteration can be detected due to the small size effect.In our experiments,C_(60)-Lys is conformally and uniformly deposited on the surface of a tilted fiber Bragg grating(TFBG)to fabricate an ultra-fast-response,high-sensitivity,and long-term stable optical fiber humidity sensor.A relative humidity(RH)detecting sensitivity of 0.080 dB/%RH and the equilibrium response time and recovery time of 1.85 s and 1.58 s are observed,respectively.Also,a linear relation is detected between the resonance intensity of the TFBG and the environment RH.In a practical breath monitoring experiment,the instantaneous response time and recovery time are measured as 40 ms and 41 ms,respectively,during a 1.5 Hz fast breath process.Furthermore,an excellent time stability and high repeatability are exhibited in experiments conducted over a range of 7 days.展开更多
Transmission characteristics of the side polished fiber were studied by experimental method.The side polished fibers with different depth and length were implemented,and the corresponding wavelength dependent loss was...Transmission characteristics of the side polished fiber were studied by experimental method.The side polished fibers with different depth and length were implemented,and the corresponding wavelength dependent loss was measured.Based on wheel fabrication,the side polished fibers were achieved with the low insertion loss and cost.Meanwhile,they can be artificially controlled for the use of evanescent field area and easy to system integration.展开更多
Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an e...Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an example, a similarity model test was designed and conducted to investigate the deformation and failure mechanism of overlying rocks in this study. Distributed fiber optic sensing(DFOS), highdensity electrical resistivity tomography(HD-ERT) and close-range photogrammetry(CRP) technologies were used in the test for comprehensive analyses. The combined use of the three methods facilitates the investigation of the spatiotemporal evolution characteristics of overburden deformation, showing that the mining-induced deformation of overburden strata was a dynamic evolution process. This process was accompanied by the formation, propagation, closure and redevelopment of separation cracks.Moreover, the key rock stratum with high strength and high-quality lithology played a crucial role in the whole process of overburden deformation. There were generally three failure modes of overburden rock layers, including bending and tension, overall shearing, and shearing and sliding. Shear failure often leads to overburden falling off in blocks, which poses a serious threat to mining safety. Therefore, realtime and accurate monitoring of overburden deformation is of great significance for the safe mining of underground coal seams.展开更多
Optical fiber sensor network has attracted considerable research interests for geoscience applications.However,the sensor capacity and ultra-low frequency noise limits the sensing performance for geoscience data acqui...Optical fiber sensor network has attracted considerable research interests for geoscience applications.However,the sensor capacity and ultra-low frequency noise limits the sensing performance for geoscience data acquisition.To achieve a high-resolution and lager sensing capacity,a strain sensor network is proposed based on phase-sensitive op-tical time domain reflectometer(φ-OTDR)technology and special packaged fiber with scatter enhanced points(SEPs)ar-ray.Specifically,an extra identical fiber with SEPs array which is free of strain is used as the reference fiber,for com-pensating the ultra-low frequency noise in theφ-OTDR system induced by laser source frequency shift and environment temperature change.Moreover,a hysteresis operator based least square support vector machine(LS-SVM)model is in-troduced to reduce the compensation residual error generated from the thermal hysteresis nonlinearity between the sensing fiber and reference fiber.In the experiment,the strain sensor network possesses a sensing capacity with 55 sensor elements.The phase bias drift with frequency below 0.1 Hz is effectively compensated by LS-SVM based hyster-esis model,and the signal to noise ratio(SNR)of a strain vibration at 0.01 Hz greatly increases by 24 dB compared to that of the sensing fiber for direct compensation.The proposed strain sensor network proves a high dynamic resolution of 10.5 pε·Hz-1/2 above 10 Hz,and ultra-low frequency sensing resolution of 166 pεat 0.001 Hz.It is the first reported a large sensing capacity strain sensor network with sub-nεsensing resolution in mHz frequency range,to the best of our knowledge.展开更多
Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light t...Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels.Different from the situation in standard single mode fiber(SMF),the fiber bending gives rise to tangential strain in off-center cores,and this unique feature has been employed for directional bending and shape sensing,where strain measurement is achieved by using either fiber Bragg gratings(FBGs),optical frequency-domain reflectometry(OFDR)or Brillouin distributed sensing technique.On the other hand,the parallel spatial cores enable space-division multiplexed(SDM)system configuration that allows for the multiplexing of multiple distributed sensing techniques.As a result,multi-parameter sensing or performance enhanced sensing can be achieved by using MCF.In this paper,we review the research progress in MCF based distributed fiber sensors.Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented.The bending sensitivity of off-center cores is analyzed.Curvature and shape sensing,as well as various SDM distributed sensing using MCF are summarized,and the working principles of diverse MCF sensors are discussed.Finally,we present the challenges and prospects of MCF for distributed sensing applications.展开更多
The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 ...The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 waveguide Electro-Optic Intensity Modulator (EOIM). By analyzing the impedance mismatch between the microwave source and the EOIM, the effective voltage applied to the RF port of the EOIM is deprived from the microwave power and its frequency. Associating with analyses of the phase velocity mismatch between the microwave and the optical wave, the theoretical modulation depth has been obtained, which is verified by experimental results. We provide a method to choose the appropriate modulation depth to optimize the desired sideband through proper transmission bias for the system based on the frequency-shift characteristic of the EOIM.展开更多
An intensity-modulated, fiber Bragg grating (FBG) sensor system based on radio-frequency (RF) signal measurement is presented. The RF signal is generated at a photodetector by two modulated optical signals reflect...An intensity-modulated, fiber Bragg grating (FBG) sensor system based on radio-frequency (RF) signal measurement is presented. The RF signal is generated at a photodetector by two modulated optical signals reflected from the sensing FBG and a reference one. Bragg wavelength shift of the sensing FBG changes intensity of the RF signal by changing phase difference between the two optical signals, with temperature effect being compensated automatically by the reference FBG, Strain measurement with a maximum sensitivity of -0.34 μV/με has been achieved.展开更多
a novel structure of the pure macro- bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respe...a novel structure of the pure macro- bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respect to the tilted grating planes. With the variations of the curvature, the core-mode resonance is unchanged and the transmission power of cladding modes detected by the photodiodes varies linearly with curvature, while the ghost mode changes by the form of two-order polynomial. So we can use the transmission power of ghost mode or other cladding modes to detect bending curvature as shape sensor. From a practical point of view, the sensor proposed here is simple, low cost and easy to implement. Moreover, it is possible to make a temperature-insensitive shape sensor due to the same temperature characteristic between the core mode and the cladding modes.展开更多
The recent research progress in the key device and technology of the fiber optic sensor network (FOSN) is introduced in this paper. An architecture of the sensor optical passive network (SPON), by employing hybrid...The recent research progress in the key device and technology of the fiber optic sensor network (FOSN) is introduced in this paper. An architecture of the sensor optical passive network (SPON), by employing hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) techniques similar to the fiber communication passive optical network (PON), is proposed. The network topology scheme of a hybrid TDM/WDM/FDM (frequency division multiplexing) three-dimension fiber optic sensing system for achieving ultra-large capacity, long distance, and high resolution sensing performance is performed and analyzed. As the most important device of the FOSN, several kinds of light source are developed, including the wideband multi-wavelength fiber laser operating at C band, switchable and tunable 2 μm multi-wavelength fiber lasers, ultra-fast mode-locked fiber laser, as well as the optical wideband chaos source, which have very good application prospects in the FOSN. Meanwhile, intelligent management techniques for the FOSN including wideband spectrum demodulation of the sensing signals and real-time fault monitoring of fiber links are presented. Moreover, several typical applications of the FOSN are also discussed, such as the fiber optic gas sensing network, fiber optic acoustic sensing network, and strain/dynamic strain sensing network.展开更多
Miniaturized fiber-Bragg-grating(FBG)interrogators are of interest for applications in the areas where weight and size controlling is important,e.g.,airplanes and aerospace or in-situ monitoring.An ultra-compact high-...Miniaturized fiber-Bragg-grating(FBG)interrogators are of interest for applications in the areas where weight and size controlling is important,e.g.,airplanes and aerospace or in-situ monitoring.An ultra-compact high-precision on-chip interrogator is proposed based on a tailored arrayed waveguide grating(AWG)on a silicon-on-insulator(SOI)platform.The on-chip interrogator enables continuous wavelength interrogation from 1544 nm to 1568 nm with the wavelength accuracy of less than 1 pm[the root-mean-square error(RMSE)is 0.73 pm]over the whole wavelength range.The chip loss is less than 5 dB.The 1×16 AWG is optimized to achieve a large bandwidth and a low noise level at each channel,and the FBG reflection peaks can be detected by multiple output channels of the AWG.The fabricated AWG is utilized to interrogate FBG sensors through the center of gravity(CoG)algorithm.The validation of an on-chip FBG interrogator that works with sub-picometer wavelength accuracy in a broad wavelength range shows large potential for applications in miniaturized fiber optic sensing systems.展开更多
With the development of high speed railway traffic, the structure health monitoring for high-speed rail is necessary due to the safety issue. Optical fiber sensing technology is one of the options to solve it. Stress ...With the development of high speed railway traffic, the structure health monitoring for high-speed rail is necessary due to the safety issue. Optical fiber sensing technology is one of the options to solve it. Stress vector information is the important index to make more reasonable judgments about railway safety. However, information sensed by lots of commercial optical sensors is scalar. According to the stress filed distribution of rail, this paper proposes a new type of stress vector sensor based on optical fiber sensing cable(OFSC) with a symmetrical seven optical fibers structure and analyzes the relations between angle resolution and distance between adjacent of optical fibers through finite-element software(ANSYS) simulation. Through reasonable distance configuration, the angle resolution of the OFSC can be improved, and thus stress vector information, including the stress magnitude and the angle of stress, can be more accurately obtained. The simulation results are helpful to configure OFSC for angle resolution improvement in actual practice, and increase the safety factor in high speed railway structure health monitoring.展开更多
The long-term settlement of calcareous sand foundations caused by daily periodic fluctuations has become a significant geological hazard,but effective monitoring tools to capture the deformation profiles are still rar...The long-term settlement of calcareous sand foundations caused by daily periodic fluctuations has become a significant geological hazard,but effective monitoring tools to capture the deformation profiles are still rarely reported.In this study,a laboratory model test and an in situ monitoring test were conducted.An optical frequency domain reflectometer(OFDR)with high spatial resolution(1 mm)and high accuracy(10-6)was used to record the soil strain responses to groundwater table and varied loads.The results indicated that the fiber-optic measurements can accurately locate the swelling and compressive zones.During the loading process,the interlock between calcareous sand particles was detected,which increased the internal friction angle of soil.The foundation deformation above the sliding surface was dominated by compression,and the soil was continuously compressed beneath the sliding surface.After 26e48 h,calcareous sand swelling occurred gradually above the water table,which was primarily dependent on capillary water.The swelling of the soil beneath the groundwater table was completed rapidly within less than 2 h.When the groundwater table and load remain constant,the compression creep behavior can be described by the Yasong-Wang model with R2¼0.993.The daily periodically varying in situ deformation of calcareous sand primarily occurs between the highest and lowest groundwater tables,i.e.4.2e6.2 m deep.The tuff interlayers with poor water absorption capacity do not swell or compress,but they produce compressive strain under the influence of deformed calcareous sand layers.展开更多
基金funding support from the Israeli Ministry of Housing and Construction(Grant No.2028286).
文摘Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.
基金support provided by the National Natural Science Foundation of China(Grant Nos.42225702,and 42077232)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022).
文摘Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.
基金funded by the National Natural Science Foundation of China(51705024,51535002,51675053,61903041,61903042,and 61903041)the National Key Research and Development Program of China(2016YFF0101801)+4 种基金the National Hightech Research and Development Program of China(2015AA042308)the Innovative Equipment Pre-Research Key Fund Project(6140414030101)the Manned Space Pre-Research Project(20184112043)the Beijing Municipal Natural Science Foundation(F7202017 and 4204101)the Beijing Nova Program of Science and Technology(Z191100001119052)。
文摘Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.
基金support from the Institute of Crustal Dynamics,China Earthquake Administration(Grant No.ZDJ2016-20 and ZDJ2019-15)。
文摘This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.
基金the Project of National Nature Science Foundation of China(No.60377032)Key Project of National Nature Science Foundation of China(No.60537050)
文摘A new kind of fiber optic oxygen sensing material based on the fluorescence quenching of Ru(bpy)3Cl2 was prepared by the themo-polymerization method. The ruthenium dye was immobilized in N, N-methylene bisacrylamide(MBBA) polymer by physically trapping while MBBA was covalently crosslinked on the glass micro-beads by NaHSO3-O2-MnSO4 initiator system. The lock-in amplifyication technology was used for the detection of their sensing properties. The influences of indicator concentration, glass micro-beads diameter, post polymerization time, concentration and reaction time of glutaraldehyde on the properties of sensing materials were studied. To optimize the influencing factors to the sensing materials, the indicator concentration of 0.7 g/L, glass micro-beads diameter of 0.3 mm, post polymerization time of 5 h were achieved. The immobilization stability of ruthenium dye and the performance of the sensing materials were improved by the new polymerization system. An absolute detection limit of 3×10-6 (V/V) and the response time of 10 s were obtained. This kind of sensing materials has good stability and their life time is 2 years.
文摘Aiming at some security problems in railway running and the application condition of existing technology, this paper studies some issues of using fiber optic sensing technology in railway security monitoring. Through field experiment measuring the strain of the rail and analyzing the experiment data, the method of diagnosing the health condition of rail and wheel is investigated.
基金the support from the National Key R&D Program of China(2021YFB2400300)the National Natural Science Foundation of China(Nos.51972131 and 5202780089).
文摘With the proposal of a“smart battery,”real-time sensing by rechargeable batteries has become progressively more important in both fundamental research and practical applications.However,many traditional sensing technologies suffer from low sensitivity,large size,and electromagnetic interference problems,rendering them unusable in the harsh and complicated electrochemical environments of batteries.The optical sensor is an alternative approach to realize multiple-parameter,multiple-point measurements simultaneously.Thus,it has garnered significant attention.Through analyzing these measured parameters,the state of interest can be decoded to monitor a battery's health.This review summarizes current progress in optical sensing techniques for batteries with respect to various sensing parameters,discussing the current limitations of optical fiber sensors as well as directions for their future development.
文摘This paperdetails experimental work done to quantify stress measurements made optically utilizing ordinary single mode optical fibers. Strain-induced changes of birefringence for ordinary single mode optical fiber responses are characterized against standard stress measurements in a well understand configuration. The experimental scheme for this work and the results are presented in detaial. In this paper, POssible applications for this transverse stress character of single mode fibers are also proposed.
基金supported by the National Natural Science Foundation of China(Nos.12274386 and 52002365)Zhejiang Provincial Natural Science Foundation of China(Nos.LQ23F050006,LY21F050006,and LQ21E020005)+1 种基金Key R&D Project of Zhejiang Province(No.2021C01179)National Key R&D Program of China(No.2021YFF0600203)。
文摘The pandemic of respiratory diseases enlightened people that monitoring respiration has promising prospects in averting many fatalities by tracking the development of diseases.However,the response speed of current optical fiber sensors is still insufficient to meet the requirements of high-frequency respiratory detection during respiratory failure.Here,a scheme for a fast and stable tachypnea monitor is proposed utilizing a water-soluble C_(60)-Lys ion compound as functional material for the tracking of humidity change in the progression of breath.The polarization of C_(60)-Lys can be tuned by the ambient relative humidity change,and an apparent refractive index alteration can be detected due to the small size effect.In our experiments,C_(60)-Lys is conformally and uniformly deposited on the surface of a tilted fiber Bragg grating(TFBG)to fabricate an ultra-fast-response,high-sensitivity,and long-term stable optical fiber humidity sensor.A relative humidity(RH)detecting sensitivity of 0.080 dB/%RH and the equilibrium response time and recovery time of 1.85 s and 1.58 s are observed,respectively.Also,a linear relation is detected between the resonance intensity of the TFBG and the environment RH.In a practical breath monitoring experiment,the instantaneous response time and recovery time are measured as 40 ms and 41 ms,respectively,during a 1.5 Hz fast breath process.Furthermore,an excellent time stability and high repeatability are exhibited in experiments conducted over a range of 7 days.
基金National Natural Science Foundation of China(No.61405127)Shanxi Province Science Foundation for Youths(No.2014021023-1)+1 种基金Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxithe Program for Top Young Academic Leaders of Higher Learning Institutions of Shanxi
文摘Transmission characteristics of the side polished fiber were studied by experimental method.The side polished fibers with different depth and length were implemented,and the corresponding wavelength dependent loss was measured.Based on wheel fabrication,the side polished fibers were achieved with the low insertion loss and cost.Meanwhile,they can be artificially controlled for the use of evanescent field area and easy to system integration.
基金funding support from the National Natural Science Foundation of China (Grant No. 42225702)the Central Government Guided Local Science and Technology Development Fund (Grant No. 226Z5404G)the Natural Science Foundation of Hebei Province,China (Grant No. D2022508002)。
文摘Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an example, a similarity model test was designed and conducted to investigate the deformation and failure mechanism of overlying rocks in this study. Distributed fiber optic sensing(DFOS), highdensity electrical resistivity tomography(HD-ERT) and close-range photogrammetry(CRP) technologies were used in the test for comprehensive analyses. The combined use of the three methods facilitates the investigation of the spatiotemporal evolution characteristics of overburden deformation, showing that the mining-induced deformation of overburden strata was a dynamic evolution process. This process was accompanied by the formation, propagation, closure and redevelopment of separation cracks.Moreover, the key rock stratum with high strength and high-quality lithology played a crucial role in the whole process of overburden deformation. There were generally three failure modes of overburden rock layers, including bending and tension, overall shearing, and shearing and sliding. Shear failure often leads to overburden falling off in blocks, which poses a serious threat to mining safety. Therefore, realtime and accurate monitoring of overburden deformation is of great significance for the safe mining of underground coal seams.
基金financial supports from the National Natural Science Foundation of China(NSFC)(No.61922033&61775072)Major Technology Innovation of Hubei Province(2019AAA053)+1 种基金Foundation for Innovative Research Groups of Hubei Province of China(2018CFA004)Innovation Fund of WNLO。
文摘Optical fiber sensor network has attracted considerable research interests for geoscience applications.However,the sensor capacity and ultra-low frequency noise limits the sensing performance for geoscience data acquisition.To achieve a high-resolution and lager sensing capacity,a strain sensor network is proposed based on phase-sensitive op-tical time domain reflectometer(φ-OTDR)technology and special packaged fiber with scatter enhanced points(SEPs)ar-ray.Specifically,an extra identical fiber with SEPs array which is free of strain is used as the reference fiber,for com-pensating the ultra-low frequency noise in theφ-OTDR system induced by laser source frequency shift and environment temperature change.Moreover,a hysteresis operator based least square support vector machine(LS-SVM)model is in-troduced to reduce the compensation residual error generated from the thermal hysteresis nonlinearity between the sensing fiber and reference fiber.In the experiment,the strain sensor network possesses a sensing capacity with 55 sensor elements.The phase bias drift with frequency below 0.1 Hz is effectively compensated by LS-SVM based hyster-esis model,and the signal to noise ratio(SNR)of a strain vibration at 0.01 Hz greatly increases by 24 dB compared to that of the sensing fiber for direct compensation.The proposed strain sensor network proves a high dynamic resolution of 10.5 pε·Hz-1/2 above 10 Hz,and ultra-low frequency sensing resolution of 166 pεat 0.001 Hz.It is the first reported a large sensing capacity strain sensor network with sub-nεsensing resolution in mHz frequency range,to the best of our knowledge.
文摘Multicore fiber(MCF)which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels.Different from the situation in standard single mode fiber(SMF),the fiber bending gives rise to tangential strain in off-center cores,and this unique feature has been employed for directional bending and shape sensing,where strain measurement is achieved by using either fiber Bragg gratings(FBGs),optical frequency-domain reflectometry(OFDR)or Brillouin distributed sensing technique.On the other hand,the parallel spatial cores enable space-division multiplexed(SDM)system configuration that allows for the multiplexing of multiple distributed sensing techniques.As a result,multi-parameter sensing or performance enhanced sensing can be achieved by using MCF.In this paper,we review the research progress in MCF based distributed fiber sensors.Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented.The bending sensitivity of off-center cores is analyzed.Curvature and shape sensing,as well as various SDM distributed sensing using MCF are summarized,and the working principles of diverse MCF sensors are discussed.Finally,we present the challenges and prospects of MCF for distributed sensing applications.
基金supported by Program for New Century Excellent Talents in University(No.NCET-06-0925)
文摘The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 waveguide Electro-Optic Intensity Modulator (EOIM). By analyzing the impedance mismatch between the microwave source and the EOIM, the effective voltage applied to the RF port of the EOIM is deprived from the microwave power and its frequency. Associating with analyses of the phase velocity mismatch between the microwave and the optical wave, the theoretical modulation depth has been obtained, which is verified by experimental results. We provide a method to choose the appropriate modulation depth to optimize the desired sideband through proper transmission bias for the system based on the frequency-shift characteristic of the EOIM.
基金supported by the National Natural Science Foundation of China under Grant No. 60807021.
文摘An intensity-modulated, fiber Bragg grating (FBG) sensor system based on radio-frequency (RF) signal measurement is presented. The RF signal is generated at a photodetector by two modulated optical signals reflected from the sensing FBG and a reference one. Bragg wavelength shift of the sensing FBG changes intensity of the RF signal by changing phase difference between the two optical signals, with temperature effect being compensated automatically by the reference FBG, Strain measurement with a maximum sensitivity of -0.34 μV/με has been achieved.
基金supported by the National 863 Program under Grant No. 2006AA01Z217the National Natural Science Foundation of China under Grant No. 60736039 and 60572018the Technological Tackle Key Problem Project of Tianjin under Grant No. 07ZCKFGX00200.
文摘a novel structure of the pure macro- bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respect to the tilted grating planes. With the variations of the curvature, the core-mode resonance is unchanged and the transmission power of cladding modes detected by the photodiodes varies linearly with curvature, while the ghost mode changes by the form of two-order polynomial. So we can use the transmission power of ghost mode or other cladding modes to detect bending curvature as shape sensor. From a practical point of view, the sensor proposed here is simple, low cost and easy to implement. Moreover, it is possible to make a temperature-insensitive shape sensor due to the same temperature characteristic between the core mode and the cladding modes.
基金These works are supported by a grant from the Sub-Project of the Major Program of the National Natural Science Foundation of China (No. 61290315), the National Natural Science Foundation of China (No. 61275083, 61275004, and 61404056), the National Key Foundation of Exploring Scientific Instrument of China (No. 2013YQ16048707), and the Fundamental Research Funds for the Central Universities (HUST: No. 2014CG002, and 2014QNRC005). Much appreciation should be given to the students, Zhinlin Xu, Yiyang Luo, Fan Ai, Wei Yang, Enci Chen, Shun Wang ,Shui Zhao, Li Liu, Hao Liao, Xin Fu, Shun Wang, Wei Yang, Wang Yang, and Mingren Su.
文摘The recent research progress in the key device and technology of the fiber optic sensor network (FOSN) is introduced in this paper. An architecture of the sensor optical passive network (SPON), by employing hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) techniques similar to the fiber communication passive optical network (PON), is proposed. The network topology scheme of a hybrid TDM/WDM/FDM (frequency division multiplexing) three-dimension fiber optic sensing system for achieving ultra-large capacity, long distance, and high resolution sensing performance is performed and analyzed. As the most important device of the FOSN, several kinds of light source are developed, including the wideband multi-wavelength fiber laser operating at C band, switchable and tunable 2 μm multi-wavelength fiber lasers, ultra-fast mode-locked fiber laser, as well as the optical wideband chaos source, which have very good application prospects in the FOSN. Meanwhile, intelligent management techniques for the FOSN including wideband spectrum demodulation of the sensing signals and real-time fault monitoring of fiber links are presented. Moreover, several typical applications of the FOSN are also discussed, such as the fiber optic gas sensing network, fiber optic acoustic sensing network, and strain/dynamic strain sensing network.
基金This work wasssupported by the National Natural Science Foundation of China(Grant Nos.62020106002 and 61735017)Innovation Project of Zhejiang Laboratory(Grant No.2021MG0AL01)+2 种基金the Youth Foundation of Zhejiang Laboratory(Grant No.2020MC0AA08)Major Scientific Research Project of Zhejiang Laboratory(Grant No.2019MC0AD02)National Key Basic Research Program of China(Grant No.2021YFC2401403).
文摘Miniaturized fiber-Bragg-grating(FBG)interrogators are of interest for applications in the areas where weight and size controlling is important,e.g.,airplanes and aerospace or in-situ monitoring.An ultra-compact high-precision on-chip interrogator is proposed based on a tailored arrayed waveguide grating(AWG)on a silicon-on-insulator(SOI)platform.The on-chip interrogator enables continuous wavelength interrogation from 1544 nm to 1568 nm with the wavelength accuracy of less than 1 pm[the root-mean-square error(RMSE)is 0.73 pm]over the whole wavelength range.The chip loss is less than 5 dB.The 1×16 AWG is optimized to achieve a large bandwidth and a low noise level at each channel,and the FBG reflection peaks can be detected by multiple output channels of the AWG.The fabricated AWG is utilized to interrogate FBG sensors through the center of gravity(CoG)algorithm.The validation of an on-chip FBG interrogator that works with sub-picometer wavelength accuracy in a broad wavelength range shows large potential for applications in miniaturized fiber optic sensing systems.
文摘With the development of high speed railway traffic, the structure health monitoring for high-speed rail is necessary due to the safety issue. Optical fiber sensing technology is one of the options to solve it. Stress vector information is the important index to make more reasonable judgments about railway safety. However, information sensed by lots of commercial optical sensors is scalar. According to the stress filed distribution of rail, this paper proposes a new type of stress vector sensor based on optical fiber sensing cable(OFSC) with a symmetrical seven optical fibers structure and analyzes the relations between angle resolution and distance between adjacent of optical fibers through finite-element software(ANSYS) simulation. Through reasonable distance configuration, the angle resolution of the OFSC can be improved, and thus stress vector information, including the stress magnitude and the angle of stress, can be more accurately obtained. The simulation results are helpful to configure OFSC for angle resolution improvement in actual practice, and increase the safety factor in high speed railway structure health monitoring.
基金support provided by the National Natural Science Foundation of China(Grant No.41907244)China Postdoctoral Science Foundation(Grant No.2019M653180)the Project of the Key Laboratory of Soft Soil and Environmental Geotechnical Ministry of Education(Grant No.2019P05)is gratefully acknowledged.
文摘The long-term settlement of calcareous sand foundations caused by daily periodic fluctuations has become a significant geological hazard,but effective monitoring tools to capture the deformation profiles are still rarely reported.In this study,a laboratory model test and an in situ monitoring test were conducted.An optical frequency domain reflectometer(OFDR)with high spatial resolution(1 mm)and high accuracy(10-6)was used to record the soil strain responses to groundwater table and varied loads.The results indicated that the fiber-optic measurements can accurately locate the swelling and compressive zones.During the loading process,the interlock between calcareous sand particles was detected,which increased the internal friction angle of soil.The foundation deformation above the sliding surface was dominated by compression,and the soil was continuously compressed beneath the sliding surface.After 26e48 h,calcareous sand swelling occurred gradually above the water table,which was primarily dependent on capillary water.The swelling of the soil beneath the groundwater table was completed rapidly within less than 2 h.When the groundwater table and load remain constant,the compression creep behavior can be described by the Yasong-Wang model with R2¼0.993.The daily periodically varying in situ deformation of calcareous sand primarily occurs between the highest and lowest groundwater tables,i.e.4.2e6.2 m deep.The tuff interlayers with poor water absorption capacity do not swell or compress,but they produce compressive strain under the influence of deformed calcareous sand layers.