期刊文献+
共找到640篇文章
< 1 2 32 >
每页显示 20 50 100
Functional Optical Fiber Sensors Detecting Imperceptible Physical/Chemical Changes for Smart Batteries
1
作者 Yiding Li Li Wang +3 位作者 Youzhi Song Wenwei Wang Cheng Lin Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期268-308,共41页
The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal st... The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life. 展开更多
关键词 Smart battery Advanced embedded optical fiber sensor Battery internal physical/chemical state Quality-reliability-life characteristic
下载PDF
Controllable Synthesis of Au NRs and Its Flexible SERS Optical Fiber Probe with High Sensitivity
2
作者 熊文豪 WANG Wenbo +1 位作者 LONG Yuting 李宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期7-16,共10页
The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excel... The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability. 展开更多
关键词 surface-enhanced Raman scattering(SERS) optical fiber probe gold nanorods(Au NRs) polyelectrolyte multilayers controllable synthesis
下载PDF
Optical scanning endoscope via a single multimode optical fiber
3
作者 Guangxing Wu Runze Zhu +2 位作者 Yanqing Lu Minghui Hong Fei Xu 《Opto-Electronic Science》 2024年第3期1-32,共32页
Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatm... Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed. 展开更多
关键词 multimode optical fiber ENDOSCOPE scanning imaging FOCUSING wavefront shaping
下载PDF
Real-Time 4-Mode MDM Transmission Using Commercial 400G OTN Transceivers and All-Fiber Mode Multiplexers
4
作者 REN Fang LI Yidan +2 位作者 YE Bing LIU Jianguo CHEN Weizhang 《ZTE Communications》 2024年第1期106-110,共5页
Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low inse... Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system. 展开更多
关键词 optical fiber couplers mode(de)multiplexers mode division multiplexing transmission
下载PDF
A hardening load transfer function for rock bolts and its calibration using distributed fiber optic sensing 被引量:2
5
作者 Assaf Klar Ori Nissim Itai Elkayam 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2816-2830,共15页
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o... Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior. 展开更多
关键词 Rock bolts Distributed fiber optic sensing Pull-out tests Load transfer function Hardening model
下载PDF
Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure 被引量:1
6
作者 李玲玲 魏勇 +4 位作者 刘春兰 任卓 周爱 刘志海 张羽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期201-208,共8页
To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-typ... To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors. 展开更多
关键词 coaxial dual-waveguide optical fiber D structure optical fiber microsphere structure dual-channel fiber-optic surface plasmon resonance(SPR)sensor
下载PDF
3D printed fiber-optic nanomechanical bioprobe 被引量:1
7
作者 Mengqiang Zou Changrui Liao +17 位作者 Yanping Chen Lei Xu Shuo Tang Gaixia Xu Ke Ma Jiangtao Zhou Zhihao Cai Bozhe Li Cong Zhao Zhourui Xu Yuanyuan Shen Shen Liu Ying Wang Zongsong Gan Hao Wang Xuming Zhang Sandor Kasas Yiping Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期222-234,共13页
Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these... Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these instruments are limited because of their size and complex feedback system.In this study,we demonstrate a miniature fiber optical nanomechanical probe(FONP)that can be used to detect the mechanical properties of single cells and in vivo tissue measurements.A FONP that can operate in air and in liquids was developed by programming a microcantilever probe on the end face of a single-mode fiber using femtosecond laser two-photon polymerization nanolithography.To realize stiffness matching of the FONP and sample,a strategy of customizing the microcantilever’s spring constant according to the sample was proposed based on structure-correlated mechanics.As a proof-of concept,three FONPs with spring constants varying from 0.421 N m^(−1)to 52.6 N m^(−1)by more than two orders of magnitude were prepared.The highest microforce sensitivity was 54.5 nmμN^(−1)and the detection limit was 2.1 nN.The Young’s modulus of heterogeneous soft materials,such as polydimethylsiloxane,muscle tissue of living mice,onion cells,and MCF-7 cells,were successfully measured,which validating the broad applicability of this method.Our strategy provides a universal protocol for directly programming fiber-optic AFMs.Moreover,this method has no special requirements for the size and shape of living biological samples,which is infeasible when using commercial AFMs.FONP has made substantial progress in realizing basic biological discoveries,which may create new biomedical applications that cannot be realized by current AFMs. 展开更多
关键词 two-photon polymerization nanolithography optical fiber sensor nanomechanical probe stiffness tunable microcantilever BIOSENSOR
下载PDF
Specialty optical fibers for advanced sensing applications 被引量:1
8
作者 Huanhuan Liu Dora Juan Juan Hu +10 位作者 Qizhen Sun Lei Wei Kaiwei Li Changrui Liao Bozhe Li Cong Zhao Xinyong Dong Yuhan Tang Yihong Xiao Gerd Keiser Perry Ping Shum 《Opto-Electronic Science》 2023年第2期1-26,共26页
Optical fiber technology has changed the world by enabling extraordinary growth in world-wide communications and sensing.The rapid development and wide deployment of optical fiber sensors are driven by their excellent... Optical fiber technology has changed the world by enabling extraordinary growth in world-wide communications and sensing.The rapid development and wide deployment of optical fiber sensors are driven by their excellent sensing performance with outstanding flexibility,functionality,and versatility.Notably,the research on specialty optical fibers is playing a critical role in enabling and proliferating the optical fiber sensing applications.This paper overviews recent developments in specialty optical fibers and their sensing applications.The specialty optical fibers are reviewed based on their innovations in special structures,special materials,and technologies to realize lab in/on a fiber.An overview of sensing applications in various fields is presented.The prospects and emerging research areas of specialty optical fibers are also discussed. 展开更多
关键词 specialty optical fibers photonic crystal fiber MULTIFUNCTIONAL multi-material fibers lab in/on fiber
下载PDF
Feasibility study on sinkhole monitoring with fiber optic strain sensing nerves
9
作者 Yuxin Gao Honghu Zhu +3 位作者 Liang Qiao Xifeng Liu Chao Wei Wei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期3059-3070,共12页
Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This pa... Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse. 展开更多
关键词 SINKHOLE Geotechnical monitoring Distributed fiber optic sensing(DFOS) Artificial neural network(ANN) Ground settlement Soil arching Micro-anchor
下载PDF
A Fiber Optic Sensor for the Simultaneous Measurement of Dual-parameter Based on Hydrogel-immobilized Enzyme Complex
10
作者 TONG Yilin ZHANG Yu +2 位作者 HAN Xuecai YU Kan BAO Jiaqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1311-1318,共8页
A novel fiber optic sensor based on hydrogel-immobilized enzyme complex was developed for the simultaneous measurement of dual-parameter,the leap from a single parameter detecting fiber optic sensor to a fiber optic s... A novel fiber optic sensor based on hydrogel-immobilized enzyme complex was developed for the simultaneous measurement of dual-parameter,the leap from a single parameter detecting fiber optic sensor to a fiber optic sensor that can continuously detect two kinds of parameters was achieved.By controlling the temperature from high to low,the function of fiber sulfide sensor and fiber DCP sensor can be realized,so as to realize the continuous detection of dual-parameter.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions,the response curves,linear detection ranges,detection limits and response times of the dual-parameter sensor for testing sulfide and DCP were obtained,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing sulfide and DCP concentration of practical water samples. 展开更多
关键词 hydrogel-immobilized enzyme complex dual-parameter simultaneous measurement fiber optic sensor
下载PDF
Fiber optic sensing and performance evaluation of a water conveyance tunnel with composite linings under super-high internal pressures
11
作者 Deyang Wang Honghu Zhu +3 位作者 Jingwu Huang Zhenrui Yan Xing Zheng Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期1997-2012,共16页
For long-distance water conveyance shield tunnels in operation,the high internal water pressure may cause excessive deformation of composite linings,affecting their structural integrity and serviceability.However,the ... For long-distance water conveyance shield tunnels in operation,the high internal water pressure may cause excessive deformation of composite linings,affecting their structural integrity and serviceability.However,the deformation and failure characteristics of lining structures under internal water pressure are not well investigated in the literature,particularly for three-layer composite linings.This study presents an in situ experimental investigation on the response of two types of composite linings(i.e.separated and combined lining structures)subjected to internal pressures,in which a fiber optic nerve system(FONS)equipped with distributed strain and displacement sensing nerves was employed to monitor the performance of the two composite linings during testing.The experimental results clearly show that the damage of the tunnel lining under different internal pressures was mainly located in the self-compaction concrete layer.The separated lining structure responded more aggressively to the variations in internal pressures than the combined one.Moreover,two evaluation indices,i.e.radial displacement and effective stiffness coefficient,are proposed for describing the changes in the structural bearing performance.The effective stiffness coefficients of the two types of lining structures were reduced by 39.4%and 29.5%,respectively.Considering the convenience of field monitoring,it is suggested that the average strains at different layers can be used as characteristic parameters for estimating the health conditions of lining structures in service.The analysis results provide a practical reference for the design and health evaluation of water conveyance shield tunnels with composite linings. 展开更多
关键词 Water conveyance tunnel Composite lining interface Strain measurement Geotechnical monitoring fiber optic nerve system(FONS)
下载PDF
Tapered optical fiber DNA biosensor for detecting Leptospira DNA
12
作者 Jia-Yong Lam Mohd Hanif Yaacob Hui-Yee Chee 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2023年第3期119-128,共10页
Objective: To establish a DNA detection platform based on a tapered optical fiber to detect Leptospira DNA by targeting the leptospiral secY gene.Methods: The biosensor works on the principle of light propagating in t... Objective: To establish a DNA detection platform based on a tapered optical fiber to detect Leptospira DNA by targeting the leptospiral secY gene.Methods: The biosensor works on the principle of light propagating in the special geometry of the optical fiber tapered from a waist diameter of 125 to 12 μm. The fiber surface was functionalized through a cascade of chemical treatments and the immobilization of a DNA capture probe targeting the secY gene. The presence of the target DNA was determined from the wavelength shift in the optical transmission spectrum.Results: The biosensor demonstrated good sensitivity, detecting Leptospira DNA at 0.001 ng/μL, and was selective for Leptospira DNA without cross-reactivity with non-leptospiral microorganisms. The biosensor specifically detected DNA that was specifically amplified through the loop-mediated isothermal amplification approach.Conclusions: These findings warrant the potential of this platform to be developed as a novel alternative approach to diagnose leptospirosis. 展开更多
关键词 DNA biosensor Tapered optical fiber LEPTOSPIROSIS LEPTOSPIRA
下载PDF
A New Method for In-Situ Measurement of Internal Solitary Waves Based on the Stimulated Raman Scattering in Optical Fibers
13
作者 WANG Jing ZHANG Meng +4 位作者 MIAO Xiangying YANG Zhonghao LI Zhixin HUO Dianheng MIAO Hongli 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第3期658-664,共7页
In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or ... In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or temperature sensors.The high cost limits the spatial resolution,which ultimately affects the measuring accuracy of the ISW amplitude.In this paper,we developed an experimental measurement system for detecting ISWs based on the stimulated Raman scattering in distributed optical fibers.This system has the advantages of high precision,low cost,and easy operation.The experimental results show that the system is consistent with CTDs in the measurement of vertical ocean temperature variation.The spatial resolution of the system can reach 1.0 m and the measuring accuracy of temperature is 0.2℃.We successfully detected 3 ISWs by the system in the South China Sea and two optical remote sensing images collected on May 18,2021,the same day of two detected ISWs,verify the occurrence of the measured ISWs.We used the image pairs method to calculate the phase velocity of ISW and the result is 1.71 ms^(-1).By extracting the distances between wave packets,it can be found that the semi-diurnal tide generates the detected ISWs.The impact of the tidal current velocity on the ISW in amplitude is undeniable.Undoubtedly,the system has a great application prospect for detecting ISWs and other dynamic phenomena in the ocean. 展开更多
关键词 internal solitary wave optical fiber stimulated Raman scattering in-situ measurement
下载PDF
Encrypted optical fiber tag based on encoded fiber Bragg grating array
14
作者 Zhihao Cai Bozhe Li +13 位作者 Zhiyong Bai Dejun Liu Kaiming Yang Bonan Liu Cong Zhao Mengqiang Zou Jie Zhou Shangben Jiang Jingyi Huang Li Liu Xuming Zhang Junle Qu Yiping Wang Changrui Liao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期658-665,共8页
Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the ... Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system.Traditional physical entity marking methods for fiber labeling are bulky,easily confused,and,most importantly,the label information can be accessed easily by all potential users.This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating(FBG)array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method.Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations.It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array,and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities.The proposed fiber tag technology can be used for applications in port identification,encrypted data storage,and transmission in fiber networks. 展开更多
关键词 fiber Bragg grating femtosecond laser micromachining encrypted information optical fiber tag
下载PDF
Au@Ag Core-shell Nanorods Self-assembled on Polyelectrolyte Multilayers for Ultra-High Sensitivity SERS Fiber Probes
15
作者 王文博 XIONG Wenhao +1 位作者 LONG Yuting 李宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期505-513,共9页
We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectroly... We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas. 展开更多
关键词 surface-enhanced Raman scattering(SERS) optical fiber probe self-assembly Au@Ag core-shell nanorods(Au@Ag-NRs) polyelectrolyte multilayers
下载PDF
Modeling, Simulation and Experimental Studies of Refractometric Fiber Optic Sensor
16
作者 Supriya S. Patil Arvind D. Shaligram 《Journal of Sensor Technology》 CAS 2023年第1期1-11,共11页
Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers an... Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers and a gap between the sensor probe and reflector, wherein the liquid whose refractive index is to be measured is filled. This paper describes the importance of mathematical modeling of this sensor. Ray tracing approach is used to model the sensor mathematically. This mathematical model is generalized for any scenario which is useful to avoid tedious trial and error techniques to design the sensor prototype. Mathematical modelling is a useful tool to optimize the gap distance for a detection of refractive index of liquid. The model is developed and analyzed rigorously considering adulteration of diesel by kerosene where refractive index varies from 1.44 to 1.46. Simulation experiments are carried out to optimize the gap distance which is found to be 6.8 mm using both models. Experiments are carried out where sensor probe is fabricated and results are analyzed. It is observed that for suggested gap distance sensor output varies almost linear over the entire range. 展开更多
关键词 Refractometric fiber Optic Sensor Mathematical Modeling Ray Tracing Technique
下载PDF
An Optical Fiber Sensor for Simultaneous Measurement of pO2 and pH
17
作者 Baorong Fu Xianwen Zhang +1 位作者 Huimin Cao Zhushanying Zhang 《Open Journal of Applied Sciences》 CAS 2023年第4期579-590,共12页
Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An... Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications. 展开更多
关键词 Optical fiber Sensor OXYGEN PH FLUORESCENCE
下载PDF
Development of Glass Optical Fibers 1970-2020,Providing Us the Digitalized Communication World
18
作者 Tarja T.Volotinen CBertil A.rvidsson 《材料科学与工程(中英文A版)》 2023年第1期1-12,共12页
New types of communication cables were found to be needed already during the 1960-decade,because the copper cables had,and still would have,too high attenuation and especially limited bandwidth,due to extremely high d... New types of communication cables were found to be needed already during the 1960-decade,because the copper cables had,and still would have,too high attenuation and especially limited bandwidth,due to extremely high dispersion at communication signals above 2 Mbit/s.Already the first commercially available multimode optical fibers(1979),developed from pure silica glass with a Ge-doped core,had much lower attenuation at signal frequencies of the order of 2-9 Mbit/s and above it.However,fiber core,cladding and coating materials,cable structures and materials,as well as manufacturing-,measurements-and test methods have been needed to be developed much further to get the reliable fiber cable communication networks.The important development stages and solutions to the most significant childhood problems of the optical fibers and cables are described in this paper.Now over 500 million km of optical fibers are manufactured and installed worldwide for the communication networks.The understanding of how to make the fibers with the very good transmission,mechanical and reliability properties exists at the manufacturers of the fibers and cables. 展开更多
关键词 Optical fibers attenuation problems dispersion problems mechanical strength problems reliability core and cladding materials transmission properties mechanical properties
下载PDF
Optimization of highly nonlinear dispersion-flattened photonic crystal fiber for supercontinuum generation 被引量:5
19
作者 张亚妮 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期298-302,共5页
A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time. The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical a... A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time. The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical air holes, which offers not only a large nonlinear coefficient but also a high birefringence and low leakage losses. The PCF with nonlinear coefficient as large as 46 W-1 · km-1 at the wavelength of 1.55 um and a total dispersion as low as ±2.5 ps. nm-1 · km -1 over an ultra-broad waveband range of the S-C-L band (wavelength from 1.46 um to 1.625 um) is optimized by adjusting its structure parameter, such as the lattice constant A, the air-filling fraction f, and the air-hole ellipticity η. The novel PCF with ultra-flattened dispersion, highly nonlinear coefficient, and nearly zero negative dispersion slope will offer a possibility of efficient super-continuum generation in telecommunication windows using a few ps pulses. 展开更多
关键词 fiber optics and waveguides full vector finite element method confinement loss
下载PDF
Practical Pattern Recognition System for Distributed Optical Fiber Intrusion Monitoring Based on Ф-COTDR 被引量:3
20
作者 CAO Cong FAN Xinyu +1 位作者 LIU Qingwen HE Zuyuan 《ZTE Communications》 2017年第3期52-55,共4页
At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on... At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved. 展开更多
关键词 fiber optics sensors COTDR distributed vibration sensing SVM pattern recognition
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部