The effects of different post-space pretreatments on the retentive force of fiber posts cemented with a self-adhesive resin cement were investigated. Twenty-eight single-canal premolars were obturated by Resilon using...The effects of different post-space pretreatments on the retentive force of fiber posts cemented with a self-adhesive resin cement were investigated. Twenty-eight single-canal premolars were obturated by Resilon using warm vertical compaction and treated with distilled water, 2.5% NaOCl, 17% EDTA and 2.5% NaOCI; or 17% EDTA, 2.5% NaOCI, and ultrasonic agitation (U/E/N treatment). Subsequently, radicular dentin surfaces were observed under scanning electron microscopy (SEM). RelyX Fiber Posts were cemented in the treated canals by using RelyX U100, and thin-slice push-out test and SEM observation of coronal and apical regions of the specimens were performed. Data were analyzed using two-way ANOVA and Tukey's HSD post- hoc tests, and the percentage of failure type was calculated. Ultrasonic/EDTA/NaOC1 irrigation showed the maximum effectiveness in removing the smear layer and debris on the dentin surface. The apical bond strength of the experimental groups was significantly higher than that of the control group (P〈 0.05). Adhesive failure between cement and dentin was the most common mode of failure. No obvious RDIZ or resin tag was detected. Chemical irrigants facilitated the bonding of these fiber posts, and ultrasonic activation improved retention. Future studies should evaluate the effectiveness of irrigation on fiber post push-out strength in fatigue cycling condition.展开更多
A continuous loading push-out test technique was used to measure the interfacial shear strength of SiC fiber reinforced Ti matrix composites. The interfacial shear strength of samples as-fabricated and after heat expo...A continuous loading push-out test technique was used to measure the interfacial shear strength of SiC fiber reinforced Ti matrix composites. The interfacial shear strength of samples as-fabricated and after heat exposed at 700 and 800℃ for 50 h was successfully determined. It has been found that the interfacial shear strength of the specimen exposed at 700℃ was higher than that of as-prepared and exposed samples at 800℃. The shear strength of the as-prepared samples was about 112.45 MPa, and increased to about 153.77 MPa after heat-treating at 700℃ for 50 h, but decreased to 133.11 MPa after treating at 800℃ for 50 h. Scanning electron microscope (SEM) was used to investigate the interfacial morphology of the samples. The brittle phase was the main products of interface for samples exposed at 800℃, and the interface was easily peeled off.展开更多
基金Funded by the National Natural Science Foundation of China(No.H1408)
文摘The effects of different post-space pretreatments on the retentive force of fiber posts cemented with a self-adhesive resin cement were investigated. Twenty-eight single-canal premolars were obturated by Resilon using warm vertical compaction and treated with distilled water, 2.5% NaOCl, 17% EDTA and 2.5% NaOCI; or 17% EDTA, 2.5% NaOCI, and ultrasonic agitation (U/E/N treatment). Subsequently, radicular dentin surfaces were observed under scanning electron microscopy (SEM). RelyX Fiber Posts were cemented in the treated canals by using RelyX U100, and thin-slice push-out test and SEM observation of coronal and apical regions of the specimens were performed. Data were analyzed using two-way ANOVA and Tukey's HSD post- hoc tests, and the percentage of failure type was calculated. Ultrasonic/EDTA/NaOC1 irrigation showed the maximum effectiveness in removing the smear layer and debris on the dentin surface. The apical bond strength of the experimental groups was significantly higher than that of the control group (P〈 0.05). Adhesive failure between cement and dentin was the most common mode of failure. No obvious RDIZ or resin tag was detected. Chemical irrigants facilitated the bonding of these fiber posts, and ultrasonic activation improved retention. Future studies should evaluate the effectiveness of irrigation on fiber post push-out strength in fatigue cycling condition.
文摘A continuous loading push-out test technique was used to measure the interfacial shear strength of SiC fiber reinforced Ti matrix composites. The interfacial shear strength of samples as-fabricated and after heat exposed at 700 and 800℃ for 50 h was successfully determined. It has been found that the interfacial shear strength of the specimen exposed at 700℃ was higher than that of as-prepared and exposed samples at 800℃. The shear strength of the as-prepared samples was about 112.45 MPa, and increased to about 153.77 MPa after heat-treating at 700℃ for 50 h, but decreased to 133.11 MPa after treating at 800℃ for 50 h. Scanning electron microscope (SEM) was used to investigate the interfacial morphology of the samples. The brittle phase was the main products of interface for samples exposed at 800℃, and the interface was easily peeled off.