Sn/Yb codoped silica optical fiber preform is prepared by the modified chemical vapor deposition (MCVD) followed by the solution-doping method. Ultraviolet (UV) optical absorption, photoluminescence (PL) spectra...Sn/Yb codoped silica optical fiber preform is prepared by the modified chemical vapor deposition (MCVD) followed by the solution-doping method. Ultraviolet (UV) optical absorption, photoluminescence (PL) spectra under 978-nm laser diode (LD) pumping, and refractive index change after exposure to 266-nm laser pulses are obtained. There is only a little change in the PL spectra while a positive refractive index change up to 2×10^-4 is observed after 30-min exposure to 266-nm laser pulses. The results show that both of the peculiar photosensitivity of Smdoped silica and the gain property of Yb-doped silica fiber are preserved in the Sn/Yb codoped silica optical fiber preform. The experimental data suggest that the photosensitivity of the fiber preform under high energy density laser irradiation should be mainly due to the bond-breaking of oxygen deficient defects, while under relatively low energy density laser irradiation, the refractive index change probably originates from the photoconversion of optically active defects.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 10074011 and 60378034)the Ministry of Science and Technology of China (Nos. 02JD14001 and 03DJ14001).
文摘Sn/Yb codoped silica optical fiber preform is prepared by the modified chemical vapor deposition (MCVD) followed by the solution-doping method. Ultraviolet (UV) optical absorption, photoluminescence (PL) spectra under 978-nm laser diode (LD) pumping, and refractive index change after exposure to 266-nm laser pulses are obtained. There is only a little change in the PL spectra while a positive refractive index change up to 2×10^-4 is observed after 30-min exposure to 266-nm laser pulses. The results show that both of the peculiar photosensitivity of Smdoped silica and the gain property of Yb-doped silica fiber are preserved in the Sn/Yb codoped silica optical fiber preform. The experimental data suggest that the photosensitivity of the fiber preform under high energy density laser irradiation should be mainly due to the bond-breaking of oxygen deficient defects, while under relatively low energy density laser irradiation, the refractive index change probably originates from the photoconversion of optically active defects.