期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Dynamic Mechanical Behaviour of Ultra-high Performance Fiber Reinforced Concretes 被引量:2
1
作者 赖建中 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第6期938-945,共8页
Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fra... Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction. 展开更多
关键词 ultra-high performance fiber reinforced concretes split Hopkinson pressurebar DYNAMIC repeated impact
下载PDF
Mechanical Properties of Layered Steel Fiber and Hybrid Fiber Reinforced Concrete 被引量:5
2
作者 卢哲安 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期733-736,共4页
To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as com... To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C. 展开更多
关键词 layered steel fiber reinforced concrete mechanical properties layer hybrid fiber reinforced concrete
下载PDF
Effect of Acid Rain Erosion on Steel Fiber Reinforced Concrete 被引量:3
3
作者 王艳 牛荻涛 SONG Zhanping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期121-128,共8页
Acid rain can deteriorate the performance of reinforced concrete structure.Combined with the characteristics of acid rain in China,the properties of steel fiber reinforced concrete subjected to acid rain were studied.... Acid rain can deteriorate the performance of reinforced concrete structure.Combined with the characteristics of acid rain in China,the properties of steel fiber reinforced concrete subjected to acid rain were studied.The effects of steel fiber content and pH value of acid rain on the mass loss,erosion depth,neutralization depth,and splitting tensile strength of tested concrete were investigated.The mercury intrusion pore(MIP) test was used to analyze the influence of steel fiber on the acid rain resistance of concrete matrix.The results show that the corrosion of steel fiber reinforced concrete subjected to acid rain results from the combined effect of H^+ and SO4^2- in the acid rain,and steel fiber can improve the acid rain resistance of the tested concrete by improving the pore structure and enhancing the tie effect of the concrete matrix.The experiment further indicates that the optimum content of steel fiber is 1.5%compared to the various mixing proportion in this tests.The tested concrete mass loss and splitting tensile strength decrease followed by increasing as a function of corrosion time when the pH value of the simulation solution is 3 or 4,while they decrease continuously in the simulation solution at pH 2.Thanks to the tie effect of steel fiber,the spalling of concrete matrix is significantly improved,and the erosion depth and neutralization depth are less than those of conventional concrete. 展开更多
关键词 steel fiber reinforced concrete acid rain neutralization depth erosion depth
下载PDF
Mechanical Properties of Layered Hybrid Fiber Reinforced Concrete 被引量:3
4
作者 袁海庆 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第2期68-70,共3页
To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical pr... To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical properties of concrete were discussed.The mechanical properties include compressive strength,tensile strength,flexural strength,compressive stress-strain relationship,flexural toughness and cracking resistance of concrete.The testing results and analysis demonstrate that layered hybrid fibers can significantly improve the flexural strength,toughness and cracking resistance of concrete while the cost of concrete increases slightly. 展开更多
关键词 layered hybrid fiber reinforced concrete STRENGTH flexural toughness
下载PDF
Spalling and Mechanical Properties of Fiber Reinforced High-performance Concrete Subjected to Fire 被引量:3
5
作者 董香军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期743-749,共7页
Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC).... Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC). At the same time, the temperature-increasing velocity and constrained conditions of concrete element also play significant roles in spalling. Steel fibers cannot reduce the risk of spalling, although they have obvious beneficial effects on the mechanical properties of concrete before and after exposure to fire. Polypropylene (PP) fibers are very useful in preventing HPC from spalling, however, they have negative effects on the strengths. By using hybrid fibers (steel fibers+PP fibers), both good anti-spalling performance and improved mechanical properties come true, which may provide necessary safe guarantee for the rescue work and structure repair after fire disaster. 展开更多
关键词 fiber reinforced high-performance concrete (FRHPC) FIRE SPALLING compressive strength flexural toughness
下载PDF
Mesoscopic Modeling Approach and Application for Steel Fiber Reinforced Concrete under Dynamic Loading:A Review 被引量:2
6
作者 Jinhua Zhang Zhangyu Wu +2 位作者 Hongfa Yu Haiyan Ma Bo Da 《Engineering》 SCIE EI CAS 2022年第9期220-238,共19页
Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers e... Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers embedded in a concrete matrix usually play a strong bridging effect to enhance the bonding force between fiber and the matrix,and directly contribute to the improvement of the post-cracking behavior and residual strength of SFRC.To gain a better understanding of the action behavior of steel fibers in matrix and further capture the failure mechanism of SFRC under dynamic loads,the mesoscopic modeling approach that assumes SFRC to be composed of different mesoscale phases(i.e.,steel fibers,coarse aggregates,mortar matrix,and interfacial transition zone(ITZ))has been widely employed to simulate the dynamic responses of SFRC material and structural members.This paper presents a comprehensive review of the state-of-the-art mesoscopic models and simulations for SFRC under dynamic loading.Generation approaches for the SFRC mesoscale model in the simulation works,including steel fiber,coarse aggregate,and the ITZ between them,are reviewed and compared systematically.The material models for different phases and the interaction relationship between fiber and concrete matrix are summarized comprehensively.Additionally,some example applications for SFRC under dynamic loads(i.e.,compression,tension,and contact blast)simulated using the general mesoscale models are given.Finally,some critical analysis on the current shortcomings of the mesoscale modeling of SFRC is highlighted,which is of great significance for the future investigation and development of SFRC. 展开更多
关键词 Steel fiber reinforced concrete Mesoscale modeling Dynamic loading Materials model Interfacial characteristic
下载PDF
Charactersitics of Stress-strain Curve of High Strength Steel Fiber Reinforced Concrete under Uniaxial Tension 被引量:2
7
作者 杨萌 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期132-137,共6页
A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinfo... A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction. 展开更多
关键词 steel fiber reinforced concrete high strength uniaxial tension soften characteristics stress-strain curve
下载PDF
Experimental Investigation on the Mechanical Properties of Natural Fiber Reinforced Concrete 被引量:2
8
作者 Ismail Shah Jing Li +2 位作者 Shengyuan Yang Yubo Zhang Aftab Anwar 《Journal of Renewable Materials》 SCIE EI 2022年第5期1307-1320,共14页
Recently,addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials.This is because natural fibers are much cheaper and locally available,as compare to s... Recently,addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials.This is because natural fibers are much cheaper and locally available,as compare to synthetic fibers.Keeping in view,this current research conducted mainly focuses on the static properties of hybridized(sisal/coir),sisal and coir fiber-reinforced concrete.Two types of natural fibers sisal and coir were used in the experiment with different lengths of 10,20 and 30 mm and various natural fiber concentrations of 0.5%,1.0%,and 1.5%by mass of cement,to investigate the static properties of sisal fiber reinforced concrete(SFRC),coir fiber reinforced concrete(CFRC)and hybrid fiber reinforced concrete(HFRC).The results indicate that HFRC has increased the compressive strength up to 35.98%with the length of 20 mm and with 0.5%concentration,while the CFRC and SFRC with the length of 10 mm and with 1%concentration have increased the compressive strength up to 33.94%and 24.86%,respectively.On another hand,the split tensile strength was increased by HFRC with the length of 20 mm and with 1%concentration,CFRC with the length of 10 mm and with 1.5%concentration,and SFRC with the length of 30 mm and with 1%concentration have increased up to 25.48%,24.56%and 11.80%,respectively,while the HFRC with the length of 20 mm and with 0.5%concentration has increased the compressive strength of concrete but has decreased the split tensile strength up to 2.28%compared to PC.Overall,using the HFRC with the length of 20 mm and with 1%concentration provide the maximum output in terms of split tensile strength. 展开更多
关键词 Sisal fiber reinforced concrete coir fiber reinforced concrete hybrid fibers compressive and tensile strength
下载PDF
Flexural Strength and Behavior of Polypropylene Fiber Reinforced Concrete Beams 被引量:2
9
作者 姚武 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第2期54-57,共4页
The strength and deformation characteristics of polypropylene fiber reinforced concrete ( PFRC) beams were investigated by four-point bending procedures in this paper. Two kinds of polypropylene fibers with different ... The strength and deformation characteristics of polypropylene fiber reinforced concrete ( PFRC) beams were investigated by four-point bending procedures in this paper. Two kinds of polypropylene fibers with different fiber contents (0.2% , 0.5% , 1.0% and 1.5% ) by volume were used in, the beam, which measured 100 × 100 mm with a span of 300 mm. It was found that the strength of the reinforced concrete beams was significantly decreased, whereas the flexural toughness was improved, compared to those unreinforced concrete beams. Geometry properties and volume contents of polypropylene fiber were considered to be important factors for improving the flexural toughness. Moreover, the composite mechanism between polypropylene fiber and concrete was analyzed and discussed. 展开更多
关键词 polypropylene fiber mechanical properties fiber reinforced concrete
下载PDF
A Study on the Estimation of Prefabricated Glass Fiber Reinforced Concrete Panel Strength Values with an Artificial Neural Network Model 被引量:2
10
作者 S.A.Yıldızel A.U.Öztürk 《Computers, Materials & Continua》 SCIE EI 2016年第4期41-52,共12页
In this study,artificial neural networks trained with swarm based artificial bee colony optimization algorithm was implemented for prediction of the modulus of rapture values of the fabricated glass fiber reinforced c... In this study,artificial neural networks trained with swarm based artificial bee colony optimization algorithm was implemented for prediction of the modulus of rapture values of the fabricated glass fiber reinforced concrete panels.For the application of the ANN models,143 different four-point bending test results of glass fiber reinforced concrete mixes with the varied parameters of temperature,fiber content and slump values were introduced the artificial bee colony optimization and conventional back propagation algorithms.Training and the testing results of the corresponding models showed that artificial neural networks trained with the artificial bee colony optimization algorithm have remarkable potential for the prediction of modulus of rupture values and this method can be used as a preliminary decision criterion for quality check of the fabricated products. 展开更多
关键词 Neural network glass fiber reinforced concrete glass fiber
下载PDF
Flexural Fatigue Behavior of Layered Hybrid Fiber Reinforced Concrete 被引量:1
11
作者 王佶 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期560-563,共4页
In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress... In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress levels was simulated using the two-parameter Weibull distribution. Furthermore, both single- logarithmic and double-logarithmic regressive equations of various reliabilities were derived. It is evident that LHFRC gets the advantage of longer fatigue life over common concrete. 展开更多
关键词 layered hybrid fiber reinforced concrete(LHFRC) flexural intensity fatigue test fatigue equationion
下载PDF
Structural Behavior of Continuous Prestressed Steel Fiber Reinforced High Strength Concrete Beam 被引量:2
12
作者 刘海波 向天宇 赵人达 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期37-45,共9页
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre... The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design. 展开更多
关键词 High strength concrete Steel fiber reinforced concrete Prestressed concrete Continuous beam
下载PDF
Complete splitting process of steel fiber reinforced concrete at intermediate strain rate 被引量:1
13
作者 罗章 李夕兵 赵伏军 《Journal of Central South University of Technology》 EI 2008年第4期569-573,共5页
The complete splitting process of steel fiber reinforced concrete (SFRC) at intermediate strain rate was studied by experiment. The basic information of a self-developed SFRC dynamic test system matching with lnstro... The complete splitting process of steel fiber reinforced concrete (SFRC) at intermediate strain rate was studied by experiment. The basic information of a self-developed SFRC dynamic test system matching with lnstron 1342 materials testing machine was given, and the experiment principle and the loading mode of cubic split specimen were introduced. During the experiment, 30 cubes of 150 mm×150 mm×150 mm and 36 cubes of 100 mm×100 mm×100 mm, designed and prepared according to C20 class SFRC with different volume fractions of steel fiber (0, 1%, 2%, 3%, 4%) were tested and analyzed. At the same time, the size effect of SFRC at intermediate strain rate was investigated. The experimental study indicates that SFRC size effect is not influenced by the loading speed or strain rate. When the steel fiber content increases from 0 to 4%, the splitting strength of SFRC increases from 100% to 261%, i.e. increasing by 161% compared with that of the common concrete. The loading rate increases from 1.33 kN/s to 80.00 kN/s, and the splitting tensile strength increases by 43.55%. 展开更多
关键词 steel fiber reinforced concrete intermediate strain rate splitting test size effect
下载PDF
Long-term Behavior of Fiber Reinforced Concrete Exposed to Sulfate Solution Cycling in Drying-immersion 被引量:2
14
作者 耿永娟 金祖权 +2 位作者 HOU Baorong ZHAO Tiejun GAO Song 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期875-881,共7页
The damage process and corrosion ion distribution in concrete, which was exposed to 60 and 170 drying-immersion cycles of sulfate solution, were systematically investigated. The effects of plain concrete, plain concre... The damage process and corrosion ion distribution in concrete, which was exposed to 60 and 170 drying-immersion cycles of sulfate solution, were systematically investigated. The effects of plain concrete, plain concrete mixed with 4 and 8 kg/m^3 modified PP fiber and high-performance concrete(HPC) mixed with 0.8 kg/m^3 fine PP fiber on the damage process were also studied. The experimental results showed that thenarditeinduced surface scaling, as well as gypsum-and ettringite-induced cracks, were the main degradation forms of concrete under attack of sulfate solution and drying–immersion cycles. The relative dynamic modulus of elasticity of concrete initially increased, then reached stability and finally decreased to failure. The sulfate diffusion coefficients of plain and HPC were 10^(-12) and 10^(-13) m^2/s, respectively. The concentration of sodium ion increased with depth, then maintained stability and finally decreased rapidly with concrete depth. The content of calcium ion on the concrete surface was 110%-150% of that in the interior of specimens. Although fiber worsened the surface scaling of concrete, better resistance capacity of sulfate ion penetration into concrete was observed in plain concrete with 4 kg/m^3 modified PP fiber and HPC. 展开更多
关键词 fiber reinforced concrete sulfateion damage diffusion coefficient drying-immersion cycles
下载PDF
Seismic Enhancement of Existing Buildings by Means of Fiber Reinforced Concrete Diaphragms 被引量:1
15
作者 Alessandra Marini Giovanni Plizzari Cristina Zanotti 《Journal of Civil Engineering and Architecture》 2010年第3期6-14,共9页
Floor diaphragms may provide an effective solution for reducing the seismic vulnerability of masonry buildings. Unfortunately, diaphragms are usually not present in historical building with wooden floors but often the... Floor diaphragms may provide an effective solution for reducing the seismic vulnerability of masonry buildings. Unfortunately, diaphragms are usually not present in historical building with wooden floors but often they are non present even in old R/C buildings where floors were made without shear reinforcement. A possible strengthening technique could be based on the application of a thin concrete plate reintbrced with a welded mesh. In order to reduce the thickness of the plate, some suitable solutions may be obtained by using Fiber Reinforced Concrete (FRC) since the minimum concrete cover is no longer required because the reinforcement (fibers) is spread all over the concrete matrix. The adoption of FRC floor diaphragms is proposed and discussed in this paper; the early results from a preliminary numerical study are analyzed in order to asses the feasibility of this new strengthening technique and better organize an experimental program that is currently in progress. 展开更多
关键词 Floor diaphragms seismic retrofit. fiber reinforced Concrete FE analysis
下载PDF
Experimental Study on Electric Properties of Carbon Fiber Reinforced Concrete
16
作者 张滇军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期546-550,共5页
According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber... According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber reinforced concrete and curing age using the two-probe method. Then the effect of insulative area, location and quantity on DC resistance of carbon fiber reinforced concrete was investigated at different curing age with analysis of hydration. The results suggest that DC resistance increases greatly with its curing age, which illustrates the relationship like Gaussian curve. In every curing ages the electric capability of carbon fiber reinforced concrete weakenes with the increase of insulative area. In same curing ages, section and insulative area, the more the quantity of insulation, the stronger the conductibility. The insulative location in optimal position can only result in optimal conductibility. 展开更多
关键词 carbon fiber reinforced concrete(CFRC) RESISTANCE curing age insulative area insulative location insulative quantity
下载PDF
Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Deep Beams
17
作者 XU Lihua CHI Yin +1 位作者 SU Jie XIA Dongtao 《Wuhan University Journal of Natural Sciences》 CAS 2008年第2期201-206,共6页
By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In... By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In the simulation process, the ANSYS parametric design language (APDL) was used to set up the finite element model; the model of bond stress-slip relationship between steel bar and concrete was established. The nonlinear FEA results and test results demonstrated that the steel fiber can not only significantly improve the cracking load and ultimate bearing capacity of the concrete but also repress the development of the cracks. Meanwhile, good agreement was found between the experimental data and FEA results, if the unit type, the parameter model and the failure criterion are selected reasonably. 展开更多
关键词 steel fiber reinforced concrete deep beam nonlinear finite element bond stress-slip relationship
下载PDF
Fatigue tests of composite beam by steel fiber reinforced self-stressing concrete in the hogging bending
18
作者 胡铁明 黄承逵 +1 位作者 梁振宇 陈小锋 《Journal of Shanghai University(English Edition)》 CAS 2010年第6期430-436,共7页
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ... Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone. 展开更多
关键词 steel fiber reinforced self-stressing concrete (SFRSC) composite beam hogging bending FATIGUE
下载PDF
Detecting the Resistivity Distribution of Carbon Fiber Reinforced Concrete by Electrical Resistance Tomography Method
19
作者 徐东亮 李卓球 +1 位作者 宋显辉 吕泳 《Journal of Southwest Jiaotong University(English Edition)》 2006年第4期323-330,共8页
According to the principle of electrical resistance tomography ( ERT), the resistivity distribution of the carbon fiber reinforced concrete (CFRC) in the sensing field can be measured by injecting exciting current... According to the principle of electrical resistance tomography ( ERT), the resistivity distribution of the carbon fiber reinforced concrete (CFRC) in the sensing field can be measured by injecting exciting current and measuring the voltage on the sensor electrode arrays installed on the surface of the object. Therefore, measurement of the resistivity distribution of CFRC is divided into first measuring the boundary conditions and then inversely computing the resistivity distribution. To reach this goal, an ERT system was constructed, which is composed of a sensor array unit, a data acquisition unit and an image reconstruction unit. Simulations of static ERT was performed on set-ups with many objects spread in a homogeneous background, and a simulation of dynamic ERT was also done on a rectangular board, the resistivity of which was changed within a small domain of it. Then, the resistivity distribution of a CFRC sample with a circlar hole as the target was detected by the ERT system. Simulation and experimental results show that the reconstructed ERT image reflects the resistivity distribution or the resistivity change of CFRC structure well. Especially, a small change in resistivity can be identified from the reconstructed images in the simulation of dynamic ERT images. 展开更多
关键词 Electrical resistance tomography Carbon fiber reinforced concrete Resistivity distribution detection
下载PDF
The Influence of Steel and Basalt Fibers on the Shear and Flexural Capacity of Reinforced Concrete Beams
20
作者 Julita Krassowska Andrzej Lapko 《Journal of Civil Engineering and Architecture》 2013年第7期789-795,共7页
To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC... To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC (steel fiber reinforced concrete) with longitudinal steel reinforcement (steel ratio of 1.2 %) and varied spacing of steel stirrups and they were tested till failure. Another three series of BFRC (basalt fiber reinforced concrete) double-span model beams with a span of 2 mm~ 1,000 mm and cross section 180 mm ~ 80 mm were tested. During the tests till to the failure the beam reactions, vertical deflections and horizontal strains in concrete were registered, to clarify the range of redistribution of bending moments and shear forces over the span of the beams. Almost all the tested model beams failed in shear, showing visible influence of steel and basalt fibers on the shear capacity of the tested beams. The tests results confirmed that steel and basalt fibers in reinforced concrete beams can partially replace (in certain cases) the traditional steel stirrups calculated for shear. 展开更多
关键词 Steel and basalt fiber reinforced concrete STIRRUPS shear capacity.
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部