期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Porosity sensitivity of A356 Al alloy during fiber laser welding 被引量:4
1
作者 李凯 芦凤桂 +2 位作者 郭松涛 崔海超 唐新华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2516-2523,共8页
In order to decrease the metallurgical porosity and keyhole-induced porosity during deep penetration laser welding of Al and its alloys, and increase the mechanical properties of work-piece, the effects of welding par... In order to decrease the metallurgical porosity and keyhole-induced porosity during deep penetration laser welding of Al and its alloys, and increase the mechanical properties of work-piece, the effects of welding parameters such as laser power, welding speed and defocusing value on both kinds of porosities were systemically analyzed respectively, and the shape and fluctuation of plume of the keyhole were observed to reflect the stability of the keyhole. The results show that increasing laser power or decreasing laser spot size can lead to the rising of both number and occupied area of pores in the weld; meanwhile, the plume fluctuates violently over the keyhole, which is always companied with the intense metallic vapor, liquid metal spatter and collapsing in the keyhole, thus more pores are generated in the weld. The porosity in the weld reaches the minimum at welding velocity of 2.0 m/min when laser power is 5 kW and defocusing value is 0. 展开更多
关键词 A356 Al alloy fiber laser welding POROSITY KEYHOLE PLUME
下载PDF
Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy 被引量:13
2
作者 Han Yongquan Han Jiao +2 位作者 Chen Yan Yao Qinghu Wang peng 《China Welding》 CAS 2021年第3期7-11,共5页
The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-M... The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-MIG hybrid welding were analyzed.The stability of the hybrid welding process was evaluated by standard deviation analysis.The results show that with the increase of laser power,a large number of laser-induced plasma enters the arc column area,providing more conductive channels,which makes the heat of MIG arc more concentrated and the short circuit transition disappear.Due to the continuous effect of laser,the keyhole becomes a continuous electron emission source,and a stable cathode spot will be formed near the keyhole,which enhances the stability of MIG arc at the base current state.By using the method of standard deviation analysis,the voltage standard deviation of single MIG welding arc and laser-MIG hybrid arc within 4 seconds was calculated.The standard deviation of single MIG arc voltage was 1.05,and the standard deviation of MIG arc voltage in laser-MIG hybrid welding was 0.71–0.86,so the hybrid welding process was more stable. 展开更多
关键词 High strength aluminum alloy fiber laser-MIG hybrid welding arc behavior electrical signal
下载PDF
Experimental study of weld position detection based on keyhole infrared image during high power fiber laser welding 被引量:1
3
作者 陈余泉 高向东 +1 位作者 萧振林 陈晓辉 《China Welding》 EI CAS 2015年第3期45-51,共7页
Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-spe... Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-speed camera arranged off-axis orientation of laser beam was applied to capture the dynamic thermal images of a molten pool. The 304 austenitic stainless steel plate butt joint welding experiment with laser power 10 kW was carried out. Through analyzing the keyhole infrared image, the weld position was calculated. Least squares method was used to determine the actual weld position. Image filtering technique was used to process the keyhole image, and the keyhole centroid coordinate were calculated. Also, least squares method was used to fit the keyhole centroid curve equation and establish a nonlinear continuous model which described the deviation between keyhole centroid and weld seam. The heat accumulation effect affected by the infrared radiation was analyzed to determine whether the laser beam focus spot deviated from the desired welding seam. Experimental results showed that the keyhole centroid has related to the seam offset, and can reflect the welding quality. 展开更多
关键词 infrared image keyhole centroid high power fiber laser welding seam offset
下载PDF
Numerical simulation of the molten pool character in high power fiber laser welding
4
作者 张瑞华 蔡志鹏 潘际銮 《China Welding》 EI CAS 2011年第2期22-26,共5页
A mathematical model was developed to describe moving laser welding by using the rotary Gauss body heat source model, and the effect of recoil pressure was taken into account. The formation of the long and narrow pool... A mathematical model was developed to describe moving laser welding by using the rotary Gauss body heat source model, and the effect of recoil pressure was taken into account. The formation of the long and narrow pool in high power fiber laser welding can be explained by the mathematical model (laser power: 10 kW, welding speed: 4 -20 m/min). Numerical simulation was conducted by PHOENICS software. The results show that at high welding velocity the plasma accelerated the velocity of liquid metal around the keyhole which is the main reason for the formation of the long and narrow molten pool in high power laser welding. 展开更多
关键词 high power fiber laser welding KEYHOLE recoil pressure
下载PDF
Microstructure characteristics and liquation behavior of fiber laser welded joints of Mg-5Zn-1Mn-0.6Sn alloy sheets 被引量:1
5
作者 Qing-yuan SHE Hong-ge YAN +4 位作者 Ji-hua CHEN Bin SU Zhao-hui YU Chao CHEN Wei-jun XIA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第4期812-819,共8页
Fine-grained Mg?5Zn?1Mn?0.6Sn alloy sheets of2mm in thickness were welded by fiber laser welding.The appearanceand microstructures of the welding joints and liquation behaviors in the partially melted zone(PMZ)were in... Fine-grained Mg?5Zn?1Mn?0.6Sn alloy sheets of2mm in thickness were welded by fiber laser welding.The appearanceand microstructures of the welding joints and liquation behaviors in the partially melted zone(PMZ)were investigated.The resultsshow that,with the lower welding power and higher welding speed,the width and depth of the joints decrease.Moreover,some poresare detected at a very high welding speed.There are two kinds of liquation phenomena in the PMZ.One is the liquation networkalong grain boundaries associated with the liquation of substrate and segregation-induced liquation,the other is the molten poolinvolved with the liquation of the residual second phases at the boundaries.However,the liquation of substrate and thesegregation-induced liquation are the main liquation mechanism in the PMZ. 展开更多
关键词 magnesium alloy sheet fiber laser welding MICROSTRUCTURE liquation phenomenon liquation mechanism
下载PDF
Hyperelastic Graphene Aerogels Reinforced by In‑suit Welding Polyimide Nano Fiber with Leaf Skeleton Structure and Adjustable Thermal Conductivity for Morphology and Temperature Sensing 被引量:5
6
作者 Weida Yin Mengmeng Qin +2 位作者 Huitao Yu Jinxu Sun Wei Feng 《Advanced Fiber Materials》 SCIE EI 2023年第3期1037-1049,共13页
Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due t... Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due to inadequate chemical con-nections.In addition,the heat-transfer performance of existing compression strain sensors under stress is unclear and lacks research,making it difficult to perform real-temperature detections.To address these issues,a hyperelastic polyimide fiber/graphene aerogel(PINF/GA)with a three-dimensional interconnected structure was fabricated by simple one-pot compound-ing and in-situ welding methods.The welding of fiber lap joints promotes in-suit formation of three-dimensional crosslinked networks of polyimide fibers,which can effectively avoid slidings between fibers to form reinforced ribs,preventing graphene from damage during compression.In particular,the inner core of the fiber maintains its macromolecular chain structure and toughness during welding.Thus,PINF/GA has good structural stabilities under a large strain compression(99%).Moreover,the thermal and electrical conductivities of PINF/GA could not only change with various stresses and strains but also keep the change steady at specific stresses and strains,with its thermal-conductivity change ratio reaching up to 9.8.Hyperelastic PINF/GA,with dynamically stable thermal and electrical conductivity,as well as high heat tolerance,shows broad applica-tion prospects as sensors in detecting the shapes and temperatures of unknown objects in extreme environments. 展开更多
关键词 Graphene aerogel fiber welding Highly compressible High and low temperature resistance Cyclic stability Flexible tactile sensor
原文传递
HAZ Characterization and Mechanical Properties of QP980-DP980 Laser Welded Joints 被引量:4
7
作者 Junliang Xue Peng Peng +5 位作者 Wei Guo Mingsheng Xia Caiwang Tan Zhandong Wan Hongqiang Zhang Yongqiang Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期262-275,共14页
The QP980-DP980 dissimilar steel joints were fabricated by fiber laser welding.The weld zone(WZ)was fully martensitic structure,and heat-affected zone(HAZ)contained newly-formed martensite and partially tempered marte... The QP980-DP980 dissimilar steel joints were fabricated by fiber laser welding.The weld zone(WZ)was fully martensitic structure,and heat-affected zone(HAZ)contained newly-formed martensite and partially tempered martensite(TM)in both steels.The supercritical HAZ of the QP980 side had higher microhardness(~549.5 Hv)than that of the WZ due to the finer martensite.A softened zone was present in HAZ of QP980 and DP980,the dropped microhardness of softened zone of the QP980 and DP980 wasΔ21.8 Hv andΔ40.9 Hv,respectively.Dislocation walls and slip bands were likely formed at the grain boundaries with the increase of strain,leading to the formation of low angle grain boundaries(LAGBs).Dislocation accumulation more easily occurred in the LAGBs than that of the HAGBs,which led to significant dislocation interaction and formation of cracks.The electron back-scattered diffraction(EBSD)results showed the fraction of LAGBs in sub-critical HAZ of DP980 side was the highest under different deformation conditions during tensile testing,resulting in the failure of joints located at the sub-critical HAZ of DP980 side.The QP980-DP980 dissimilar steel joints presented higher elongation(~11.21%)and ultimate tensile strength(~1011.53 MPa)than that of DP980-DP980 similar steel joints,because during the tensile process of the QP980-DP980 dissimilar steel joint(~8.2%and 991.38 MPa),the strain concentration firstly occurred on the excellent QP980 BM.Moreover,Erichsen cupping tests showed that the dissimilar welded joints had the lowest Erichsen value(~5.92 mm)and the peak punch force(~28.4 kN)due to the presence of large amount of brittle martensite in WZ and inhomogeneous deformation. 展开更多
关键词 QP980 steel DP980 steel fiber laser welding Microstructure evolution Tensile properties FORMABILITY
下载PDF
Dendritic Boundary Corrosion of AA2198 Weld Using Fiber Laser Welding with Al–Cu Filler Wire
8
作者 Jun-Xia Lu Ling Chang +1 位作者 Shi-Kai Wu Shi-Kun Yin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第7期735-741,共7页
The microstructures and corrosion behaviors of AA2198-T851 alloy and weld were analyzed under corrosive conditions. Weld was formed using an innovative fiber laser welding process with AA2319 Al-Cu filler wire. The me... The microstructures and corrosion behaviors of AA2198-T851 alloy and weld were analyzed under corrosive conditions. Weld was formed using an innovative fiber laser welding process with AA2319 Al-Cu filler wire. The metallurgic morphology and distribution of the chemical compositions were determined using imaging techniques such as optical micrograph, scanning electron micrograph, high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry and X-ray diffraction. Corrosion was evaluated using an immersion test and electrochemical impedance spectroscopy in 3.5% NaC1 solution at room temperature. Results indicate that the parent alloy suffered from pitting corrosion during the initial 4-h immersion which was caused by the inhomogeneous distribution of its chemical compo- nents and the different intermetallics formed during the rolling process. The weld experienced dendritic boundary corrosion under the same conditions due to the addition of the Al-Cu filler and rapid solidification during laser welding, which led to the precipitates Cu enrichment along the grain boundary. When a welding joint was immersed in the solution for 5 days, a big crack was observed across the center of the weld. In comparison, there was good corrosion resistance in the heat- affected zone with a compact protective film. 展开更多
关键词 2198 Aluminum alloy. fiber laser welding Dendritic boundary corrosion Al-Cu filler wire
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部