To implement restoration in a single motion blurred image,the PSF(Point Spread Function)is difficult to estimate and the image deconvolution is ill-posed as a result that a good recovery effect cannot be obtained.Cons...To implement restoration in a single motion blurred image,the PSF(Point Spread Function)is difficult to estimate and the image deconvolution is ill-posed as a result that a good recovery effect cannot be obtained.Considering that several different PSFs can get joint invertibility to make restoration wellposed,we proposed a motion-blurred image restoration method based on joint invertibility of PSFs by means of computational photography.Firstly,we designed a set of observation device which composed by multiple cameras with the same parameters to shoot the moving target in the same field of view continuously to obtain the target images with the same background.The target images have the same brightness,but different exposure time and different motion blur length.It is easy to estimate the blur PSFs of the target images make use of the sequence frames obtained by one camera.According to the motion blur superposition feature of the target and its background,the complete blurred target images can be extracted from the observed images respectively.Finally,for the same target images with different PSFs,the iterative restoration is solved by joint solution of multiple images in spatial domain.The experiments showed that the moving target observation device designed by this method had lower requirements on hardware conditions,and the observed images are more convenient to use joint-PSF solution for image restoration,and the restoration results maintained details well and had lower signal noise ratio(SNR).展开更多
In this work we propose efficient codec algorithms for watermarking images that are intended for uploading on the web under intellectual property protection. Headed to this direction, we recently suggested a way in wh...In this work we propose efficient codec algorithms for watermarking images that are intended for uploading on the web under intellectual property protection. Headed to this direction, we recently suggested a way in which an integer number w which being transformed into a self-inverting permutation, can be represented in a two dimensional (2D) object and thus, since images are 2D structures, we have proposed a watermarking algorithm that embeds marks on them using the 2D representation of w in the spatial domain. Based on the idea behind this technique, we now expand the usage of this concept by marking the image in the frequency domain. In particular, we propose a watermarking technique that also uses the 2D representation of self-inverting permutations and utilizes marking at specific areas thanks to partial modifications of the image’s Discrete Fourier Transform (DFT). Those modifications are made on the magnitude of specific frequency bands and they are the least possible additive information ensuring robustness and imperceptiveness. We have experimentally evaluated our algorithms using various images of different characteristics under JPEG compression. The experimental results show an improvement in comparison to the previously obtained results and they also depict the validity of our proposed codec algorithms.展开更多
The traditional information hiding methods embed the secret information by modifying the carrier,which will inevitably leave traces of modification on the carrier.In this way,it is hard to resist the detection of steg...The traditional information hiding methods embed the secret information by modifying the carrier,which will inevitably leave traces of modification on the carrier.In this way,it is hard to resist the detection of steganalysis algorithm.To address this problem,the concept of coverless information hiding was proposed.Coverless information hiding can effectively resist steganalysis algorithm,since it uses unmodified natural stego-carriers to represent and convey confidential information.However,the state-of-the-arts method has a low hidden capacity,which makes it less appealing.Because the pixel values of different regions of the molecular structure images of material(MSIM)are usually different,this paper proposes a novel coverless information hiding method based on MSIM,which utilizes the average value of sub-image’s pixels to represent the secret information,according to the mapping between pixel value intervals and secret information.In addition,we employ a pseudo-random label sequence that is used to determine the position of sub-images to improve the security of the method.And the histogram of the Bag of words model(BOW)is used to determine the number of subimages in the image that convey secret information.Moreover,to improve the retrieval efficiency,we built a multi-level inverted index structure.Furthermore,the proposed method can also be used for other natural images.Compared with the state-of-the-arts,experimental results and analysis manifest that our method has better performance in anti-steganalysis,security and capacity.展开更多
Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sedime...Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%.展开更多
基金funding of Natural Science Foundation of Shandong Province(ZR2013F0025),www.sdnsf.gov.cn.
文摘To implement restoration in a single motion blurred image,the PSF(Point Spread Function)is difficult to estimate and the image deconvolution is ill-posed as a result that a good recovery effect cannot be obtained.Considering that several different PSFs can get joint invertibility to make restoration wellposed,we proposed a motion-blurred image restoration method based on joint invertibility of PSFs by means of computational photography.Firstly,we designed a set of observation device which composed by multiple cameras with the same parameters to shoot the moving target in the same field of view continuously to obtain the target images with the same background.The target images have the same brightness,but different exposure time and different motion blur length.It is easy to estimate the blur PSFs of the target images make use of the sequence frames obtained by one camera.According to the motion blur superposition feature of the target and its background,the complete blurred target images can be extracted from the observed images respectively.Finally,for the same target images with different PSFs,the iterative restoration is solved by joint solution of multiple images in spatial domain.The experiments showed that the moving target observation device designed by this method had lower requirements on hardware conditions,and the observed images are more convenient to use joint-PSF solution for image restoration,and the restoration results maintained details well and had lower signal noise ratio(SNR).
文摘In this work we propose efficient codec algorithms for watermarking images that are intended for uploading on the web under intellectual property protection. Headed to this direction, we recently suggested a way in which an integer number w which being transformed into a self-inverting permutation, can be represented in a two dimensional (2D) object and thus, since images are 2D structures, we have proposed a watermarking algorithm that embeds marks on them using the 2D representation of w in the spatial domain. Based on the idea behind this technique, we now expand the usage of this concept by marking the image in the frequency domain. In particular, we propose a watermarking technique that also uses the 2D representation of self-inverting permutations and utilizes marking at specific areas thanks to partial modifications of the image’s Discrete Fourier Transform (DFT). Those modifications are made on the magnitude of specific frequency bands and they are the least possible additive information ensuring robustness and imperceptiveness. We have experimentally evaluated our algorithms using various images of different characteristics under JPEG compression. The experimental results show an improvement in comparison to the previously obtained results and they also depict the validity of our proposed codec algorithms.
基金This work is supported,in part,by the National Natural Science Foundation of China under grant numbers U1536206,U1405254,61772283,61602253,61672294,61502242in part,by the Jiangsu Basic Research Programs-Natural Science Foundation under grant numbers BK20150925 and BK20151530+1 种基金in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fundin part,by the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET)fund,China.
文摘The traditional information hiding methods embed the secret information by modifying the carrier,which will inevitably leave traces of modification on the carrier.In this way,it is hard to resist the detection of steganalysis algorithm.To address this problem,the concept of coverless information hiding was proposed.Coverless information hiding can effectively resist steganalysis algorithm,since it uses unmodified natural stego-carriers to represent and convey confidential information.However,the state-of-the-arts method has a low hidden capacity,which makes it less appealing.Because the pixel values of different regions of the molecular structure images of material(MSIM)are usually different,this paper proposes a novel coverless information hiding method based on MSIM,which utilizes the average value of sub-image’s pixels to represent the secret information,according to the mapping between pixel value intervals and secret information.In addition,we employ a pseudo-random label sequence that is used to determine the position of sub-images to improve the security of the method.And the histogram of the Bag of words model(BOW)is used to determine the number of subimages in the image that convey secret information.Moreover,to improve the retrieval efficiency,we built a multi-level inverted index structure.Furthermore,the proposed method can also be used for other natural images.Compared with the state-of-the-arts,experimental results and analysis manifest that our method has better performance in anti-steganalysis,security and capacity.
文摘Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%.