期刊文献+
共找到31,206篇文章
< 1 2 250 >
每页显示 20 50 100
Distributed fiber optic sensors for tunnel monitoring:A state-of-the-art review
1
作者 Xuehui Zhang Honghu Zhu +1 位作者 Xi Jiang Wout Broere 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3841-3863,共23页
Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr... Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring. 展开更多
关键词 Distributed fiber optic sensor(DFOS) Tunnel infrastructure Distributed strain sensing Point displacement monitoring Field instrumentation
下载PDF
Functional Optical Fiber Sensors Detecting Imperceptible Physical/Chemical Changes for Smart Batteries
2
作者 Yiding Li Li Wang +3 位作者 Youzhi Song Wenwei Wang Cheng Lin Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期268-308,共41页
The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal st... The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life. 展开更多
关键词 Smart battery Advanced embedded optical fiber sensor Battery internal physical/chemical state Quality-reliability-life characteristic
下载PDF
Quantitative Identification of Delamination Damage in Composite Structure Based on Distributed Optical Fiber Sensors and Model Updating
3
作者 Hao Xu Jing Wang +3 位作者 Rubin Zhu Alfred Strauss Maosen Cao Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第6期785-803,共19页
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan... Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures. 展开更多
关键词 Composite structures fiber optic sensor damage identification model updating surrogate model
下载PDF
Optical micro/nanofiber enabled tactile sensors and soft actuators:A review
4
作者 Lei Zhang Yuqi Zhen Limin Tong 《Opto-Electronic Science》 2024年第8期13-29,共17页
As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progres... As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented. 展开更多
关键词 flexible opto-electronic devices tactile sensors soft actuators optical micro/nanofibers
下载PDF
Ultrasensitive skin‐like wearable optical sensors based on glass micro/nanofibers 被引量:29
5
作者 Lei Zhang Jing Pan +12 位作者 Zhang Zhang Hao Wu Ni Yao Dawei Cai Yingxin Xu Jin Zhang Guofei Sun Liqiang Wang Weidong Geng Wenguang Jin Wei Fang Dawei Di Limin Tong 《Opto-Electronic Advances》 2020年第3期18-24,共7页
Electronic skin,a class of wearable electronic sensors that mimic the functionalities of human skin,has made remarkable success in applications including health monitoring,human-machine interaction and electronic-biol... Electronic skin,a class of wearable electronic sensors that mimic the functionalities of human skin,has made remarkable success in applications including health monitoring,human-machine interaction and electronic-biological interfaces.While electronic skin continues to achieve higher sensitivity and faster response,its ultimate performance is fundamentally limited by the nature of low-frequency AC currents.Herein,highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers(MNFs)in thin layers of polydimethylsiloxane(PDMS).Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli,the skin-like optical sensors show ultrahigh sensitivity(1870 k·Pa^-1),low detection limit(7 mPa)and fast response(10μs)for pressure sensing,significantly exceeding the performance metrics of state-of-the-art electronic skins.Electromagnetic interference(EMI)-free detection of high-frequency vibrations,wrist pulse and human voice are realized.Moreover,a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated.These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins. 展开更多
关键词 optical micro/nanofiber pressure sensor TACTILE sensor WEARABLE sensor
下载PDF
MZI/FPI Fiber Optic Dual-parameter Sensor Based on a Double Cone and Air Cavity Structure(Invited)
6
作者 YUAN Tingxuan ZHAO Lilong +5 位作者 REN Jianxin MAO Yaya ULLAH Rahat WU Xiangyu MAO Beibei XIA Wenchao 《光子学报》 EI CAS CSCD 北大核心 2024年第10期64-72,共9页
This paper proposes a Mach Zehnder/Fabry Perot Interferometer(MZI/FPI)fiber sensor based on Single-mode Fiber(SMF)and Hollow-core Fiber(HCF),which has high sensitivity to temperature and lateral loads.The proposed dev... This paper proposes a Mach Zehnder/Fabry Perot Interferometer(MZI/FPI)fiber sensor based on Single-mode Fiber(SMF)and Hollow-core Fiber(HCF),which has high sensitivity to temperature and lateral loads.The proposed device consists of two single-mode fiber cones formed by manually controlling the fusion splicer and an air cavity formed by fusing a section of hollow-core fiber.The structure of the sensor is a double cone cascaded air cavity.At the beginning of the design,we compared the basic transmission spectra of single cone structure and double cone structure experimentally,and therefore chose to use double cone structure and air cavity cascade.Light undergoes its first reflection at the first interface between the single-mode fiber and the air cavity structure,and its second reflection at the second interface between the air cavity structure and the single-mode fiber.The two reflected light waves produced by the two reflections form FP interference,which can be used to measure lateral loads.The transmitted light is excited through the first cone,and a portion of the core mode light is excited to the cladding,while another portion of the core mode light continues to propagate in the core.The light couples at the second cone,and the cladding mode light couples back into the core,forming MZ interference with the core mode light,which can be used to measure temperature.The use of hollow-core fiber to form an air cavity has little effect on transmitted light,while avoiding the problem of crosstalk in dual parameter measurements.By designing temperature and lateral load experiments,this article verifies the sensitivity characteristics of this sensor to temperature and lateral loads.A significant redshift phenomenon was observed in the temperature experiment.A significant redshift phenomenon also occurred in the lateral load experiment.Through wavelength demodulation,the experimental results show that the wavelength sensitivity of the sensor to temperature is 56.29 pm/℃in the range of 30℃to 80℃.The wavelength sensitivity of the sensor to lateral loads is 1.123 nm/N in the range of 0~5 N.In addition,we have prepared multiple sets of fiber optic sensors with this structure and conducted repeated experiments to verify that the sensing performance of this structure of fiber optic sensors for temperature and lateral load is relatively stable.Also,the different waist diameters of cones will have a certain impact on the transmission spectrum of MZ,while the length of the air cavity will also have a certain impact on the reflection spectrum of FP.This article lists some fiber optic sensors for dual parameter measurement of temperature and lateral load.Compared with the listed sensors,the fiber optic sensor proposed in this article has better sensitivity to temperature and lateral load.And the fiber optic sensor proposed in this article has a simple manufacturing process,low production cost,and good performance,which has certain prospects in scientific research and industrial production. 展开更多
关键词 Temperature Lateral load fiber sensor Mach-Zehnder interferometer Fabry-Pérot interferometer
下载PDF
Thermal stress simulation analysis of aerospace optical fibers and connectors and related extensions to high-speed railway area
7
作者 Feng Zhou Siyuan Yu +3 位作者 Zeren Gao Jie Kan Hao Xu Mengjie Liu 《High-Speed Railway》 2024年第2期122-132,共11页
Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They ca... Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways. 展开更多
关键词 Aerospace optical fiber Aerospace optic connector Simulation analysis
下载PDF
Influence of Waveguide Properties on Wave Prototypes Likely to Accompany the Dynamics of Four-Wave Mixing in Optical Fibers
8
作者 Jean Roger Bogning Marcelle Nina Zambo Abou’ou +4 位作者 Christian Regis Ngouo Tchinda Mathurin Fomekong Oriel Loh Ndichia Stallone Mezezem Songna François Béceau Pelap 《Journal of Applied Mathematics and Physics》 2024年第7期2601-2633,共33页
In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of... In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest. 展开更多
关键词 optical fiber Four Waves Mixing Implicit Bogning Function Coupled Nonlinear Partial Differential Equations Nonlinear Coefficient Dispersive Coefficient Waveguide Properties
下载PDF
Remote structural health monitoring with serially multiplexed fiber optic acoustic emission sensors 被引量:2
9
作者 陈仲裕 梁玉进 Farhad Ansari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第1期141-146,共6页
Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points alo... Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake. 展开更多
关键词 acoustic emission crack detection concrete EARTHQUAKE fiber optic sensors FRP tendon MULTIPLEXING post seismic structural health monitoring
下载PDF
Combined optical fiber interferometric sensors for the detection of acoustic emission 被引量:2
10
作者 LIANG Yi-jun MU Lin-lin LIU Jun-feng YU Xiao-tao 《Optoelectronics Letters》 EI 2008年第3期184-187,共4页
A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be use... A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure. Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy. PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid. The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of interferometer and using Fourier transform technique. The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics. 展开更多
关键词 Acoustic emissions Acoustics Electric network analysis fiber optics fibers Fourier transforms Geodetic satellites INTERFEROMETERS Interferometry Lattice vibrations Light sources Michelson interferometers optical fibers optical in Acoustic emission sensors Acoustic Emission signals fiber loop reflectors Fourier Frequency characteristics Interferometric sensors Laser sources Light energy Light intensities Operating points opticAL Vibration signals
下载PDF
Loading Localization by Small-Diameter Optical Fiber Sensors 被引量:1
11
作者 Liu Rongmei Zhu Lujia +1 位作者 Lu Jiyun Liang Dakai 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第2期275-281,共7页
Structural health monitoring(SHM)in service has attracted increasing attention for years.Load localization on a structure is studied hereby.Two algorithms,i.e.,support vector machine(SVM)method and back propagation ne... Structural health monitoring(SHM)in service has attracted increasing attention for years.Load localization on a structure is studied hereby.Two algorithms,i.e.,support vector machine(SVM)method and back propagation neural network(BPNN)algorithm,are proposed to identify the loading positions individually.The feasibility of the suggested methods is evaluated through an experimental program on a carbon fiber reinforced plastic laminate.The experimental tests involve in application of four optical fiber-based sensors for strain measurement at discrete points.The sensors are specially designed fiber Bragg grating(FBG)in small diameter.The small-diameter FBG sensors are arrayed in 2-D on the laminate surface.The testing results indicate that the loading position could be detected by the proposed method.Using SVM method,the 2-D FBG sensors can approximate the loading location with maximum error less than 14 mm.However,the maximum localization error could be limited to about 1 mm by applying the BPNN algorithm.It is mainly because the convergence conditions(mean square error)can be set in advance,while SVM cannot. 展开更多
关键词 SMALL DIAMETER optical fiber sensor structural health monitoring LOADING LOCALIZATION BACK propagation neural network support VECTOR machine
下载PDF
Absolute Measurement Fiber-optic Sensors inLarge Structural Monitoring 被引量:2
12
作者 WANG Zhao-ying, WU Xing, TIAN He-bin, LI Shi-chen(College of Precision Instrum.and Optoelectron.Eng., Tianjin University, Tianjin 300072, CHN) 《Semiconductor Photonics and Technology》 CAS 2003年第2期102-106,共5页
The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being ... The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects. 展开更多
关键词 SOFO system F―P fiberoptic sensors fizeau interferometer white―lightcross―correlator fiber bragg sensors large structure monitoring
下载PDF
Magneto-Optic Fiber Bragg Gratings with Application to High-Resolution Magnetic Field Sensors 被引量:4
13
作者 Bao-Jian Wu Ying Yang Kun Qiu 《Journal of Electronic Science and Technology of China》 2008年第4期423-425,共3页
Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical wa... Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted. 展开更多
关键词 Faraday effect fiber Bragg grating magneto-optical sensor transmission spectra.
下载PDF
Optical fiber Bragg grating sensors in smart structures
14
《大连理工大学学报》 EI CAS CSCD 北大核心 1997年第S2期76-76,共1页
OpticalfiberBragggratingsensorsinsmartstructuresWeichongDu1,2,WJin2,SHLiu1(1HongKongPolytechnicUniv.2SouthCh... OpticalfiberBragggratingsensorsinsmartstructuresWeichongDu1,2,WJin2,SHLiu1(1HongKongPolytechnicUniv.2SouthChinaNormalUniv.)Op... 展开更多
关键词 SMART opticAL fiber GRATING sensors BRAGG
下载PDF
DETERMINATION OF INTERNAL STRAIN IN 3-D BRAIDED COMPOSITES USING OPTIC FIBER STRAIN SENSORS
15
作者 YuanShenfang HuangRui LiXianghua LiuXiaohui 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第1期52-57,共6页
A reliable understanding of the properties of 3-D braided composites is of primary importance for proper utilization of these materials. A new method is introduced to study the mechanical performance of braided compos... A reliable understanding of the properties of 3-D braided composites is of primary importance for proper utilization of these materials. A new method is introduced to study the mechanical performance of braided composite materials using embedded optic fiber sensors. Experimental research is performed to devise a method of incorporating optic fibers into a 3-D braided composite structure. The efficacy of this new testing method is evaluated on two counts. First, the optical performance of optic fibers is studied before and after incorporated into 3-D braided composites, as well as after completion of the manufacturing process for 3-D braided composites, to validate the ability of the optic fiber to survive the manufacturing process. On the other hand, the influence of incorporated optic fiber on the original braided composite is also researched by tension and compression experiments. Second, two kinds of optic fiber sensors are co-embedded into 3-D braided composites to evaluate their respective ability to measure the internal strain. Experimental results show that multiple optic fiber sensors can be co-braided into 3-D braided composites to determine their internal strain which is difficult to be fulfilled by other current existing methods. 展开更多
关键词 braided composites optic fiber sensor mechanical properties strain measurement
下载PDF
High resolution angular-displacement sensor based on whispering gallery mode resonance in bent optical fibers
16
作者 YU Ying-yu WANG Su-mei +2 位作者 LI Ben-ye WU Hong-bin CAO Zhi-tao 《Journal of Beijing Institute of Technology》 EI CAS 2014年第1期42-46,共5页
A simple fiber sensor to measure angular displacement with high resolution, which is based on whispering gallery mode (WGM) resonance in bent optical fibers,is proposed. The sensor is composed of a single loop forme... A simple fiber sensor to measure angular displacement with high resolution, which is based on whispering gallery mode (WGM) resonance in bent optical fibers,is proposed. The sensor is composed of a single loop formed by loosely tying a knot using single mode fiber. To measure the transmission spectra, a tunable laser and an optic power meter are connected to the two ends of fi- ber loop, respectively. Significant WGM resonances occur over the investigated wavelength range for all the sensors with different bend radius. The angular-displacement sensitivity is studied in the range from -0. 1°to 0. 1°. The detection limit of 1.49 × 10 ^-7 rad can be achieved for the detecting system with the resolution of lpm. The simple loop-structure fiber sensor has potential application prospect in the field of architecture or bridge building with low detection limit and low cost. 展开更多
关键词 whispering gallery mode (WGM) angular displacement optical fiber sensor
下载PDF
Review of reflective fiber optic sensors for surface topography measurement
17
作者 YANG Rui-feng HU Chen-hao +2 位作者 GUO Chen-xia GAI Ting LANG Guo-wei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期59-67,共9页
Different from the traditional contact surface topography measurement,reflective intensity-modulated fiber optic sensor(RIM-FOS)has the unique advantages of non-contact nondestructive detection.This paper briefly intr... Different from the traditional contact surface topography measurement,reflective intensity-modulated fiber optic sensor(RIM-FOS)has the unique advantages of non-contact nondestructive detection.This paper briefly introduces the principle and performance of RIM-FOS for surface topography measurement and compares with several other methods of topography measurement.Based on the review of its development process,this paper summarizes and analyses the hot issues of RIM-FOS in the surface topography measurement,then predicts the future trend for a guidance of the further study. 展开更多
关键词 reflective intensity-modulated fiber optic sensor(RIM-FOS) topography measurement probe structure interference compensation
下载PDF
Optical Fiber Torsion Sensor with Mechanically Induced Long Period Fiber Gratings in Rare-Earth Doped Fibers
18
作者 Maria Pulido-Navarro José álvarez-Chávez +1 位作者 Daniel Ceballos-Herrera Ponciano Escamilla-Ambrosio 《Optics and Photonics Journal》 2014年第6期129-135,共7页
In this work wavelength sensitivity in mechanically induced long period fiber gratings (MLPFG) is analyzed. This analysis is first carried out both in standard single-mode fiber SMF-28 and in Er-doped fibers. The mech... In this work wavelength sensitivity in mechanically induced long period fiber gratings (MLPFG) is analyzed. This analysis is first carried out both in standard single-mode fiber SMF-28 and in Er-doped fibers. The mechanical analysis for both types of fibers under different torsion conditions is presented. In order to apply the torsion one of the fiber ends is fixed while torsion is applied on the other end. A MLPFG whose period is 503 μm is used to press the fiber after torsion is applied. This allows for micro curvatures to be formed on the fiber, which in turn generates a periodical index perturbation on it. Here, it was noted that the sensitive wavelength shift of the rejection bands is bigger for Er-doped fibers. For a torsion of 6 turns applied to 10 cm of doped fiber the wavelength peaks can be moved up to 25 nm, which is longer to what was detected on standard fibers. Therefore, by using Er-doped fibers to monitor torsion on structures will give more sensitive and accurate results than using standard fibers. These results can be employed for sensing applications, especially for small to medium size structures, which can be mechanical, civil or aeronautics. 展开更多
关键词 optical fiber sensors fiber BRAGG Gratingsensors TORSION sensors RARE-EARTH Doped fibers
下载PDF
Fiber Optic Sensors and Sensor Networks Using a Time-domain Sensing Scheme
19
作者 Chuji Wang Malik Kaya +2 位作者 Peeyush Sahay Haifa Alali Robert Reese 《Optics and Photonics Journal》 2013年第2期236-239,共4页
Fiber loop ringdown (FLRD) has demonstrated to be capable of sensing various quantities, such as chemical species, pressure, refractive index, strain, temperature, etc.;and it has high potential for the development of... Fiber loop ringdown (FLRD) has demonstrated to be capable of sensing various quantities, such as chemical species, pressure, refractive index, strain, temperature, etc.;and it has high potential for the development of a sensor network. In the present work, we describe design and development of three different types of FLRD sensors for water, cracks, and temperature sensing in concrete structures. All of the three aforementioned sensors were indigenously developed very recently in our laboratory and their capabilities of detecting the respective quantities were demonstrated. Later, all of the sensors were installed in a test grout cube for real-time monitoring. This work presents the results obtained in the laboratory-based experiments as well as the results from the real-time monitoring process in the test cube. 展开更多
关键词 fiber LOOP RINGDOWN Structural Health Monitoring Water CRACK and Temperature SENSING sensor Network
下载PDF
Surface Plasmon Resonance Sensors Based on Polymer Optical Fiber
20
作者 Rong-Sheng Zheng Yong-Hua Lu Zhi-Guo Xie Jun Tao Kai-Qun Lin Hai Ming 《Journal of Electronic Science and Technology of China》 2008年第4期357-360,共4页
Surface Plasmon Resonance (SPR) is a powerful technique for directly sensing in biological studies, chemical detection and environmental pollution monitoring. In this paper, we present polymer optical fiber applicat... Surface Plasmon Resonance (SPR) is a powerful technique for directly sensing in biological studies, chemical detection and environmental pollution monitoring. In this paper, we present polymer optical fiber application in SPR sensors, including wavelength interrogation surface enhanced Raman scattering SPR sensor and surface enhanced Raman scattering (SERS) probe. Long-period fiber gratings are fabricated on single mode polymer optical fiber (POF) with 120 μm period and 50% duty cycle. The polarization characteristic of this kind of birefringent grating is studied. Theoretical analysis shows it will be advantageous in SPR sensing applications. 展开更多
关键词 optical fiber gratings polymer optical fiber surface plasmon resonance surface plasmon wave(SPW) surface enhanced Raman scattering.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部