DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structu...DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h~(-1)) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.展开更多
The enhanced power quality provided by multilevel inverters(MLIs)has made them more appropriate for medium-and high-power applications,including photovoltaic systems.Nevertheless,a prevalent limitation involves the ne...The enhanced power quality provided by multilevel inverters(MLIs)has made them more appropriate for medium-and high-power applications,including photovoltaic systems.Nevertheless,a prevalent limitation involves the necessity for numerous switches and increased voltage stress across these switches,consequently increasing the overall system cost.To address these challenges,a new 17-level asymmetrical MLI with fewer components and low voltage stress is proposed for the photovoltaic system.This innovative MLI configuration has four direct current(DC)sources and 10 switches.Based on the trinary sequence,the proposed topology uses photovoltaics with boost converters and fuzzy logic controllers as its DC sources.Mathematical equations are used to calculate cru-cial parameters for this proposed design,including total standing voltage per unit(TSVPU),cost function per level(CF/L),component count per level(CC/L)and voltage stress across the switches.The comparison is conducted by considering switches,DC sources,TSVPU,CF/L,gate driver circuits and CC/L with other existing MLI topologies.The analysis is carried out under various conditions,encompassing different levels of irradiance,variable loads and modulation indices.To reduce the total harmonic distortion of the suggested topology,the phase opposition disposition approach has been incorporated.The suggested framework is simulated in MATLAB®/Simulink®.The results indicate that the proposed topology achieves a well-distributed stress profile across the switches and has CC/L of 1.23,TSVPU of 5 and CF/L of 4.58 and 5.76 with weight coefficients of 0.5 and 1.5,respectively.These values are not-ably superior to those of existing MLI topologies.Simulation results demonstrate that the proposed topology maintains a consistent output at varying irradiance levels with FLCs and exhibits robust performance under variable loads and diverse modulation indices.Furthermore,the total harmonic distortion achieved with phase opposition disposition is 7.78%,outperforming alternative pulse width modulation techniques.In summary,it provides enhanced performance.Considering this,it is suitable for the photovoltaic system.展开更多
基金Supported by Program for Changjiang Scholars and Innovative Research Team in University,Ministry of Education of China(PCSIRT)
文摘DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h~(-1)) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.
文摘The enhanced power quality provided by multilevel inverters(MLIs)has made them more appropriate for medium-and high-power applications,including photovoltaic systems.Nevertheless,a prevalent limitation involves the necessity for numerous switches and increased voltage stress across these switches,consequently increasing the overall system cost.To address these challenges,a new 17-level asymmetrical MLI with fewer components and low voltage stress is proposed for the photovoltaic system.This innovative MLI configuration has four direct current(DC)sources and 10 switches.Based on the trinary sequence,the proposed topology uses photovoltaics with boost converters and fuzzy logic controllers as its DC sources.Mathematical equations are used to calculate cru-cial parameters for this proposed design,including total standing voltage per unit(TSVPU),cost function per level(CF/L),component count per level(CC/L)and voltage stress across the switches.The comparison is conducted by considering switches,DC sources,TSVPU,CF/L,gate driver circuits and CC/L with other existing MLI topologies.The analysis is carried out under various conditions,encompassing different levels of irradiance,variable loads and modulation indices.To reduce the total harmonic distortion of the suggested topology,the phase opposition disposition approach has been incorporated.The suggested framework is simulated in MATLAB®/Simulink®.The results indicate that the proposed topology achieves a well-distributed stress profile across the switches and has CC/L of 1.23,TSVPU of 5 and CF/L of 4.58 and 5.76 with weight coefficients of 0.5 and 1.5,respectively.These values are not-ably superior to those of existing MLI topologies.Simulation results demonstrate that the proposed topology maintains a consistent output at varying irradiance levels with FLCs and exhibits robust performance under variable loads and diverse modulation indices.Furthermore,the total harmonic distortion achieved with phase opposition disposition is 7.78%,outperforming alternative pulse width modulation techniques.In summary,it provides enhanced performance.Considering this,it is suitable for the photovoltaic system.