AIM: To describe the significant over-expression of fibroblast growth factor receptor 3 (FGFR3), which is a signal transduction and cell proliferation related gene in hepatocellular carcinoma (HCC).METHODS: Following ...AIM: To describe the significant over-expression of fibroblast growth factor receptor 3 (FGFR3), which is a signal transduction and cell proliferation related gene in hepatocellular carcinoma (HCC).METHODS: Following DNA microarray, Northern blot and quantitative real-time PCR were employed to confirm FGFR3 expression difference in HCC tissues and surrounding non-neoplastic liver tissue. FGFR3 expression levels were further determined by immunohistochemical study in 43 cases of HCC.RESULTS: Northern blot results showed the significant over-expression of FGFR3 in HCC tissues, which was consistent with that from DNA microarray. Quantitative real-time PCR demonstrated that the mean ratio of FGFR3 mRNA to glyceraldehyde-3-phosphate dehydrogenase (GADPH) mRNA in HCC tissue was 0.250, whereas the ratio in non-neoplastic liver tissue was 0.014. Statistical analyses of 43 cases of HCC revealed that HCC scored higher than the matched non-neoplastic liver tissues.Examination of clinicopathological features revealed a strong correlation of over-expression of FGFR3 with poor tumor differentiation and high nuclear grade.CONCLUSION: Over-expression of FGFR3 may play an important role in liver carcinogenesis. FGFR3 may be an ideal candidate as a molecular marker in the diagnosis of HCC and a potential therapeutic target.展开更多
Background: Fibroblast growth factor receptor 3 (FGFR3) inhibits growth-plate chondrocyte proliferation and limits bone elongation. Gain-of-function FGFR3 mutations cause dwarfism, reduced telomerase activity and s...Background: Fibroblast growth factor receptor 3 (FGFR3) inhibits growth-plate chondrocyte proliferation and limits bone elongation. Gain-of-function FGFR3 mutations cause dwarfism, reduced telomerase activity and shorter telomeres in growth plate chondroyctes suggesting that FGFR3 reduces proliferative capacity, inhibits telomerase, and enhances senescence. Thyroid hormone (1-3) plays a role in cellular maturation of growth plate chondrocytes and a known target of T3 is FGFR3. The present study addressed whether reduced FGFR3 expression enhanced telomerase activity, mRNA expression of telomerase reverse transcriptase (TERT) and RNA component of telomerase (TR), and chondrocyte proliferation, and whether the stimulation of FGFR3 by T3 evoked the opposite response. Results: Sheep growth-plate proliferative zone chondrocytes were cultured and transfected with siRNA to reduce FGFR3 expression; FGFR3 siRNA reduced chondrocyte FGFR3 mRNA and protein resulting in greater proliferation and increased TERT mRNA expression and telomerase activity (p 〈 0.0.5). Chondrocytes treated with T3 significantly enhanced FGFR3 mRNA and protein expression and reduced telomerase activity (p 〈 0.05); TERT and TR were not significantly reduced. The action of T3 at the growth plate may be partially mediated through the FGFR3 pathway. Conclusions: The results suggest that FGFR3 inhibits chondrocyte proliferation and reducing telomerase activity indicating an important role for telomerase in capacity during bone elongation. by down-regulating TERT expression sustaining chondrocyte proliferative展开更多
The present study explored the distribution and localization of fibroblast growth factor-8 and its potential receptor, fibroblast growth factor receptor-3, in adult rat brain in vivo and in nerve cells during differen...The present study explored the distribution and localization of fibroblast growth factor-8 and its potential receptor, fibroblast growth factor receptor-3, in adult rat brain in vivo and in nerve cells during differentiation of neural stem/progenitor cells in vitro. Immunohistochemistry was used to examine the distribution of fibroblast growth factor-8 in adult rat brain in vivo. Localization of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in cells during neural stem/progenitor cell differentiation in vitro was detected by immunofluorescence. Flow cytometry and immunofluorescence were used to evaluate the effect of an anti-fibroblast growth factor-8 antibody on neural stem/progenitor cell differentiation and expansion in vitro. Results from this study confirmed that fibroblast growth factor-8 was mainly distributed in adult midbrain, namely the substantia nigra, compact part, dorsal tier, substantia nigra and reticular part, but was not detected in the forebrain comprising the caudate putamen and striatum. Unusual results were obtained in retrosplenial locations of adult rat brain. We found that fibroblast growth factor-8 and fibroblast growth factor receptor-3 were distributed on the cell membrane and in the cytoplasm of nerve cells using immunohistochemistry and immunofluorescence analyses. We considered that the distribution of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in neural cells corresponded to the characteristics of fibroblast growth factor-8, a secretory factor. Addition of an anti-fibroblast growth factor-8 antibody to cultures significantly affected the rate of expansion and differentiation of neural stem/progenitor cells. In contrast, addition of recombinant fibroblast growth factor-8 to differentiation medium promoted neural stem/progenitor cell differentiation and increased the final yields of dopaminergic neurons and total neurons. Our study may help delineate the important roles of fibroblast growth factor-8 in brain activities and neural stem/progenitor cell differentiation.展开更多
基金Supported by Ralph M. Parsons Foundation and Shanghai Educational Commission Grant, No. 04BC32, and Sino American Cancer Foundation
文摘AIM: To describe the significant over-expression of fibroblast growth factor receptor 3 (FGFR3), which is a signal transduction and cell proliferation related gene in hepatocellular carcinoma (HCC).METHODS: Following DNA microarray, Northern blot and quantitative real-time PCR were employed to confirm FGFR3 expression difference in HCC tissues and surrounding non-neoplastic liver tissue. FGFR3 expression levels were further determined by immunohistochemical study in 43 cases of HCC.RESULTS: Northern blot results showed the significant over-expression of FGFR3 in HCC tissues, which was consistent with that from DNA microarray. Quantitative real-time PCR demonstrated that the mean ratio of FGFR3 mRNA to glyceraldehyde-3-phosphate dehydrogenase (GADPH) mRNA in HCC tissue was 0.250, whereas the ratio in non-neoplastic liver tissue was 0.014. Statistical analyses of 43 cases of HCC revealed that HCC scored higher than the matched non-neoplastic liver tissues.Examination of clinicopathological features revealed a strong correlation of over-expression of FGFR3 with poor tumor differentiation and high nuclear grade.CONCLUSION: Over-expression of FGFR3 may play an important role in liver carcinogenesis. FGFR3 may be an ideal candidate as a molecular marker in the diagnosis of HCC and a potential therapeutic target.
基金supported by W.K. Kellogg Endowmentthe infrastructure support of the Department of Animal Science, College of Agricultural and Environmental Sciences+1 种基金the California Agricultural Experiment Station of the University of California-Davis(CA-D*-ASC-5256-AH)financial assistance from Scholarships funded by the Ford Family Foundation and the endowment of G. Kirk Swingle
文摘Background: Fibroblast growth factor receptor 3 (FGFR3) inhibits growth-plate chondrocyte proliferation and limits bone elongation. Gain-of-function FGFR3 mutations cause dwarfism, reduced telomerase activity and shorter telomeres in growth plate chondroyctes suggesting that FGFR3 reduces proliferative capacity, inhibits telomerase, and enhances senescence. Thyroid hormone (1-3) plays a role in cellular maturation of growth plate chondrocytes and a known target of T3 is FGFR3. The present study addressed whether reduced FGFR3 expression enhanced telomerase activity, mRNA expression of telomerase reverse transcriptase (TERT) and RNA component of telomerase (TR), and chondrocyte proliferation, and whether the stimulation of FGFR3 by T3 evoked the opposite response. Results: Sheep growth-plate proliferative zone chondrocytes were cultured and transfected with siRNA to reduce FGFR3 expression; FGFR3 siRNA reduced chondrocyte FGFR3 mRNA and protein resulting in greater proliferation and increased TERT mRNA expression and telomerase activity (p 〈 0.0.5). Chondrocytes treated with T3 significantly enhanced FGFR3 mRNA and protein expression and reduced telomerase activity (p 〈 0.05); TERT and TR were not significantly reduced. The action of T3 at the growth plate may be partially mediated through the FGFR3 pathway. Conclusions: The results suggest that FGFR3 inhibits chondrocyte proliferation and reducing telomerase activity indicating an important role for telomerase in capacity during bone elongation. by down-regulating TERT expression sustaining chondrocyte proliferative
基金supported by the National Natural Science Foundation of China,No.81070614the Key Project of the Natural Science Foundation of Hubei Province of China,No. 2008CDA044the Natural Science Foundation of Hubei University of Medicine,No.2011QDZR-2
文摘The present study explored the distribution and localization of fibroblast growth factor-8 and its potential receptor, fibroblast growth factor receptor-3, in adult rat brain in vivo and in nerve cells during differentiation of neural stem/progenitor cells in vitro. Immunohistochemistry was used to examine the distribution of fibroblast growth factor-8 in adult rat brain in vivo. Localization of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in cells during neural stem/progenitor cell differentiation in vitro was detected by immunofluorescence. Flow cytometry and immunofluorescence were used to evaluate the effect of an anti-fibroblast growth factor-8 antibody on neural stem/progenitor cell differentiation and expansion in vitro. Results from this study confirmed that fibroblast growth factor-8 was mainly distributed in adult midbrain, namely the substantia nigra, compact part, dorsal tier, substantia nigra and reticular part, but was not detected in the forebrain comprising the caudate putamen and striatum. Unusual results were obtained in retrosplenial locations of adult rat brain. We found that fibroblast growth factor-8 and fibroblast growth factor receptor-3 were distributed on the cell membrane and in the cytoplasm of nerve cells using immunohistochemistry and immunofluorescence analyses. We considered that the distribution of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in neural cells corresponded to the characteristics of fibroblast growth factor-8, a secretory factor. Addition of an anti-fibroblast growth factor-8 antibody to cultures significantly affected the rate of expansion and differentiation of neural stem/progenitor cells. In contrast, addition of recombinant fibroblast growth factor-8 to differentiation medium promoted neural stem/progenitor cell differentiation and increased the final yields of dopaminergic neurons and total neurons. Our study may help delineate the important roles of fibroblast growth factor-8 in brain activities and neural stem/progenitor cell differentiation.