Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased es...Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.展开更多
A comprehensive study was conducted to differentiate cardiovascular disease (CVD) subjects from non-CVD subjects using short recording electrocardiogram (ECG) of 244 Malaysian adults in The MalaysianCohort project. An...A comprehensive study was conducted to differentiate cardiovascular disease (CVD) subjects from non-CVD subjects using short recording electrocardiogram (ECG) of 244 Malaysian adults in The MalaysianCohort project. An automated peak detection algorithm to detect nine fiducialpoints of electrocardiogram (ECG) was developed. Forty-eight features wereextracted in both time and frequency domains, including statistical featuresobtained from heart rate variability and Poincare plot analysis. These includefive new features derived from spectrum counts of five different frequencyranges. Feature selection was then made based on p-value and correlationmatrix. Selected features were used as input for five classifiers of artificialneural network (ANN), k-nearest neighbors (kNN), support vector machine(SVM), discriminant analysis (DA), and decision tree (DT). Results showedthat six features related to T wave were statistically significant in distinguishingCVD and non-CVD groups. ANN had performed the best with 94.44% specificity and 86.3% accuracy, followed by kNN with 80.56% specificity, 86.49%sensitivity and 83.56% accuracy. The novelties of this study were in providingalternative solutions to detect P-onset, P-offset, T-offset as well as QRS-onsetpoints using discrete wavelet transform method. Additionally, two out of thefive newly proposed spectral features were significant in differentiating bothgroups, at frequency ranges of 1–10 Hz and 5–10 Hz. The prediction outcomeswere also comparable to previous related studies and significantly importantin using ECG to predict cardiac-related events among CVD and non-CVDsubjects in the Malaysian population.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(xzy022020045)the National Natural Science Foundation of China(61976175)。
文摘Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.
基金This study was supported by the Ministry of Education Malaysia’s Fundamental Research Grant Scheme FRGS/1/2019/TK04/UKM/02/4TMC research was funded by a top-down grant from the Ministry of Education Malaysia(Grant Number PDE48).
文摘A comprehensive study was conducted to differentiate cardiovascular disease (CVD) subjects from non-CVD subjects using short recording electrocardiogram (ECG) of 244 Malaysian adults in The MalaysianCohort project. An automated peak detection algorithm to detect nine fiducialpoints of electrocardiogram (ECG) was developed. Forty-eight features wereextracted in both time and frequency domains, including statistical featuresobtained from heart rate variability and Poincare plot analysis. These includefive new features derived from spectrum counts of five different frequencyranges. Feature selection was then made based on p-value and correlationmatrix. Selected features were used as input for five classifiers of artificialneural network (ANN), k-nearest neighbors (kNN), support vector machine(SVM), discriminant analysis (DA), and decision tree (DT). Results showedthat six features related to T wave were statistically significant in distinguishingCVD and non-CVD groups. ANN had performed the best with 94.44% specificity and 86.3% accuracy, followed by kNN with 80.56% specificity, 86.49%sensitivity and 83.56% accuracy. The novelties of this study were in providingalternative solutions to detect P-onset, P-offset, T-offset as well as QRS-onsetpoints using discrete wavelet transform method. Additionally, two out of thefive newly proposed spectral features were significant in differentiating bothgroups, at frequency ranges of 1–10 Hz and 5–10 Hz. The prediction outcomeswere also comparable to previous related studies and significantly importantin using ECG to predict cardiac-related events among CVD and non-CVDsubjects in the Malaysian population.