The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribologi...The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process.展开更多
Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron ...Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron microscopy(HRTEM), photoluminescence(PL), and x-ray photoelectron spectroscopy(XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation(002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasihoneycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS_2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS_2. The stoichiometric mole ratio of S/Mo is about 2.0–2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS_2 under our experimental conditions.展开更多
Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arra...Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arranged is investigated.The self-supported diamond tubes are obtained by etching away the tungsten substrates.The quality of the diamond film before and after the removal of substrates is observed by scanning electron microscope(SEM)and Raman spectrum.The results show that the cylindrical diamond tubes with good quality and uniform thickness are obtained on tungsten wires by using bias enhanced hot filament CVD.The compressive stress in diamond film formed during the deposition is released after the substrate etches away by mixture of H2O2 and NH4 OH.There is no residual stress in diamond tube after substrate removal.展开更多
The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thic...The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thick diamond film (80μm) with smooth surface, desirable for practical application in many fields is obtained展开更多
In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant is hydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless number...In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant is hydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers for heat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phase heat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature and H concentration distributions between the filament and the substrate. Examination of the relative importance of homogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecular hydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociation rates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the literature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociation rates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lower effective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heat transfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.展开更多
Hot-filament chemical vapor deposition ( HFCVD) is a promising method for commercial production of diamond films. Filament performance in heat transfer and hydrogen decomposition in reactive environment was investigat...Hot-filament chemical vapor deposition ( HFCVD) is a promising method for commercial production of diamond films. Filament performance in heat transfer and hydrogen decomposition in reactive environment was investigated. Power consumption by the filament in vacuum, helium and 2% CH4/H2 was experimentally determined in temperature range 1300℃-2200℃. Filament heat transfer mechanism in C-H reactive environment was calculated and analyzed. The result shows that due to surface carburization and slight carbon deposition, radiation in stead of hydrogen dissociation, becomes the largest contributor to power consumption. Filament-surface dissociation of H2 was observed at temperatures below 1873K, demonstrating the feasibility of diamond growth at low filament temperatures. The effective activation energies of hydrogen dissociation on several clean refractory flaments were derived from power consumption data in literatures. They are all lower than that of thermal dissociation of hydrogen revealing the nature of catalytic dissociation of hydrogen on filament surface. Observation of substrate temperature suggested a weaker role of atomic hydrogen recombination in heating substrates in C-H environment than in pure hydrogen.展开更多
In HFCVD system the substrate temperature is a key factor which deeply affects the quality of diamond films. Th e magnitude and the variation of the substrate temperature must be limited in a suitable range to depo...In HFCVD system the substrate temperature is a key factor which deeply affects the quality of diamond films. Th e magnitude and the variation of the substrate temperature must be limited in a suitable range to deposit diamond films of uniform thickness over large areas. In this paper, the hot filament parameters are investigated on the basi s of GAs to realize a good substrate temperature profile. Computer simulations d emonstrate that on parameters optimized by GAs a uniform substrate temperatur e field can be formed over a relatively large circle area with R s=10 cm.展开更多
The effects of Si doping on morphology, components and structure characteristics of CVD diamond films were studied. Si-doped CVD diamond films were deposited on Si substrate by adding tetraethoxysilane (TEOS) into a...The effects of Si doping on morphology, components and structure characteristics of CVD diamond films were studied. Si-doped CVD diamond films were deposited on Si substrate by adding tetraethoxysilane (TEOS) into acetone as source of reactant gas. The morphology and microstructure of diamond films were characterized by scanning electron microcopy (SEM). The crystalline quality of diamond films was studied by Raman spectroscopy and X-ray diffractometry (XRD). The surface roughness of the films was evaluated with surface profilometer. The results suggest that Si doping tends to reduce the crystallite size, enhance grain refinement and inhibit the appearance of (11 I) facets. Raman spectra indicate that Si doping can enhance the formation of sp2 phase in diamond films. Moreover, Raman signal of SiC was detected, which suggests the existence of Si in the diamond films. Smooth fine-grained diamond (SFGD) film was synthesized at Si to C ratio of 1%.展开更多
Boron-substituted carbon powder, B x C1?x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared B x C1?x samples can be controlled by varyi...Boron-substituted carbon powder, B x C1?x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared B x C1?x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10–20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize approximately at 620°C and has a higher oxidation resistance than carbon.展开更多
The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting proper...The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting properties of as-deposited MCD and FGD films coated silicon nitride (Si3N4) inserts are comparatively investigated in this study. The scanning electron microscopy (SEM) and Raman spectroscopy are adopted to studythe characterization of the deposited diamond films. The friction tests are conducted on a ball-on-plate typereciprocating friction tester in ambient air using Co-cemented tungsten carbide (WC-Co), Si3N4 and ball-bearing steel (BBS) balls as the mating materials of the diamond films. For sliding against WC-Co, Si3N4 and BBS,the FGD film presents lower friction coeffcients than the MCD film. However, after sliding against Si3N4, the FGD film is subject to more severe wear than the MCD film. The cutting performance of as-deposited MCD and FGD coated Si3N4 inserts is examined in dry turning glass fiber reinforced plastics (GFRP) composite materials,comparing with the uncoated Si3N4 insert. The results indicate that the lifetime of Si3N4 inserts can be prolonged by depositing the MCD or FGD film on them and the FGD coated insert shows longer cutting lifetime than the MCD coated one.展开更多
Tribological properties of chemical vapor deposition (CVD) diamond films greatly affect its application in the mechanical field. In this paper, a novel multilayer structure is proposed, with which multilayer diamond f...Tribological properties of chemical vapor deposition (CVD) diamond films greatly affect its application in the mechanical field. In this paper, a novel multilayer structure is proposed, with which multilayer diamond films are deposited on silicon carbide by hot filament CVD (HFCVD) method. The different micrometric diamond grains are produced by adjusting deposition parameters. The as-deposited multilayer diamond films are characterized by scanning electron microscope (SEM) and white-light interferometry. The friction tests performed on a reciprocating ball-on-plate tribometer suggest that silicon carbide presents the friction coefficient of 0.400 for dry sliding against silicon nitride (Si3N4) ceramic counterface. With the water lubrication, the corresponding friction coefficients of silicon carbide and as-deposited multilayer diamond films further reduce to 0.193 and 0.051, respectively. The worn surfaces indicate that multilayer diamond films exhibit considerably high wear resistance.展开更多
In this study, the temperature and gas velocity distributions in hot filament chemical vapor deposition(HFCVD) diamond film growth on the end surfaces of seals are simulated by the finite volume method. The influence ...In this study, the temperature and gas velocity distributions in hot filament chemical vapor deposition(HFCVD) diamond film growth on the end surfaces of seals are simulated by the finite volume method. The influence of filament diameter, filament separation and rotational speed of the substrates is considered. Firstly,the simulation model is established by simplifying operating conditions to simulate the temperature and gas velocity distributions. Thereafter, the deposition parameters are optimized as 0.6 mm filament diameter, 18 mm filament separation and 5 r/min rotational speed to get the uniform temperature distribution. Under the influence of the rotational speed, the difference between temperature gradients along the directions perpendicular to the filament and parallel to the filament becomes narrow, it is consistent with the actual condition, and the maximum temperature difference on the substrates decreases to 7.4?C. Furthermore, the effect of the rotational speed on the gas velocity distribution is studied. Finally, diamond films are deposited on the end surfaces of Si C seals with the optimized deposition parameters. The characterizations by scanning electron microscopy(SEM) and Raman spectroscopy exhibit a layer of homogeneous diamond films with fine-faceted crystals and uniform thickness. The results validate the simulation model.展开更多
The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentratio...The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentration. Orthogonal experiments were introduced to study the comprehensive effects of such three parameters on diamond films deposited on WC-Co substrates. Field emission scanning electron microscopy, atomic force microscopy and Raman spectrum were employed to analyze the morphology, growth rate and composition of as-deposited diamond films. The morphology varies from pyramidal to cluster features with temperature decreasing. It is found that the low total pressure is suitable for nano-crystalline diamond films growth. Moreover, the substrate temperature and total pressure have combined influence on the growth rate of the diamond films.展开更多
Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon c...Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.展开更多
A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical...A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical bonding states, phase composition and electrochemical properties of each deposited sample were studied by scanning electron microscopy, Raman spectra, X-ray diffraction, microhardness indentation, and electrochemical analysis. Results show that the average grain size of diamond and the growth rate decrease with increasing the B/C ratio. The diamond films exhibit excellent adhesion under Vickers microhardness testing (9.8 N load). The sample with 2% B/C ratio has a wider potential window and a lower background current as well as a faster redox reaction rate in H2SO4 solution and KFe(CN)6 redox system compared with other doping level electrodes.展开更多
Amorphous Si O2(a-Si O2) films were synthesized on WC-Co substrates with H2 and tetraethoxysilane(TEOS) via pyrolysis of molecular precursor.X-ray diffraction(XRD) pattern shows that silicon-cobalt compounds for...Amorphous Si O2(a-Si O2) films were synthesized on WC-Co substrates with H2 and tetraethoxysilane(TEOS) via pyrolysis of molecular precursor.X-ray diffraction(XRD) pattern shows that silicon-cobalt compounds form at the interface between a-Si O2 films and WC-Co substrates.Moreover,it is observed by transmission electron microscope(TEM) that the a-Si O2 films are composed of hollow mirco-spheroid a-Si O2 particles.Subsequently,the a-Si O2 films are used as intermediate films and chemical vapor deposition(CVD) diamond films are deposited on them.Indentation tests were performed to evaluate the adhesion of bi-layer(a-Si O2 + diamond) films on cemented carbide substrates.And the cutting performance of bi-layer(a-Si O2 + diamond) coated inserts was evaluated by machining the glass fiber reinforced plastic(GFRP).The results show that a-Si O2 interlayers can greatly improve the adhesive strength of diamond films on cemented carbide inserts;furthermore,thickness of the a-Si O2 interlayers plays a significant role in their effectiveness on adhesion enhancement of diamond films.展开更多
Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of d...Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of deposition temperature on the properties of the boron-doped diamond films on tungsten carbide substrate was investigated.It is found that boron doping obviously enhances the growth rate of diamond films.A relatively high growth rate of 544 nm/h was obtained for the BDD film deposited on the tungsten carbide at 650°C.The added boron-containing precursor gas apparently reduced activation energy of film growth to be 53.1 kJ/mol,thus accelerated the rate of deposition chemical reaction.Moreover,Raman and XRD analysis showed that heavy boron doping(750 and 850°C)deteriorated the diamond crystallinity and produced a high defect density in the BDD films.Overall,600-700°C is found to be an optimum substrate temperature range for depositing BDD films on tungsten carbide substrate.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50575135)Program for New Century Excellent Talents of Ministry of Education of China (Grant No. NCET-06-0399)Tribology Science Fund of the State Key Laboratory of Tribology, China
文摘The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY16F040003 and LY16A040007)the National Natural Science Foundation of China(Grant Nos.51401069 and 11574067)
文摘Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron microscopy(HRTEM), photoluminescence(PL), and x-ray photoelectron spectroscopy(XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation(002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasihoneycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS_2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS_2. The stoichiometric mole ratio of S/Mo is about 2.0–2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS_2 under our experimental conditions.
基金Selected from Proceedings of the 7th International Conference on Frontiers of Design and Manufacturing(ICFDM'2006)This project is supported by National Natural Science Foundation of China(No.50475026,No.50275095,No.50575135).
文摘Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arranged is investigated.The self-supported diamond tubes are obtained by etching away the tungsten substrates.The quality of the diamond film before and after the removal of substrates is observed by scanning electron microscope(SEM)and Raman spectrum.The results show that the cylindrical diamond tubes with good quality and uniform thickness are obtained on tungsten wires by using bias enhanced hot filament CVD.The compressive stress in diamond film formed during the deposition is released after the substrate etches away by mixture of H2O2 and NH4 OH.There is no residual stress in diamond tube after substrate removal.
文摘The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thick diamond film (80μm) with smooth surface, desirable for practical application in many fields is obtained
文摘In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant is hydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers for heat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phase heat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature and H concentration distributions between the filament and the substrate. Examination of the relative importance of homogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecular hydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociation rates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the literature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociation rates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lower effective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heat transfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.
基金Supported by the National Natural Science Foundation of China under contract No.59976038.
文摘Hot-filament chemical vapor deposition ( HFCVD) is a promising method for commercial production of diamond films. Filament performance in heat transfer and hydrogen decomposition in reactive environment was investigated. Power consumption by the filament in vacuum, helium and 2% CH4/H2 was experimentally determined in temperature range 1300℃-2200℃. Filament heat transfer mechanism in C-H reactive environment was calculated and analyzed. The result shows that due to surface carburization and slight carbon deposition, radiation in stead of hydrogen dissociation, becomes the largest contributor to power consumption. Filament-surface dissociation of H2 was observed at temperatures below 1873K, demonstrating the feasibility of diamond growth at low filament temperatures. The effective activation energies of hydrogen dissociation on several clean refractory flaments were derived from power consumption data in literatures. They are all lower than that of thermal dissociation of hydrogen revealing the nature of catalytic dissociation of hydrogen on filament surface. Observation of substrate temperature suggested a weaker role of atomic hydrogen recombination in heating substrates in C-H environment than in pure hydrogen.
文摘In HFCVD system the substrate temperature is a key factor which deeply affects the quality of diamond films. Th e magnitude and the variation of the substrate temperature must be limited in a suitable range to deposit diamond films of uniform thickness over large areas. In this paper, the hot filament parameters are investigated on the basi s of GAs to realize a good substrate temperature profile. Computer simulations d emonstrate that on parameters optimized by GAs a uniform substrate temperatur e field can be formed over a relatively large circle area with R s=10 cm.
基金Project(51275302)supported by the National Natural Science Foundation of ChinaProject(BC2012124)supported by Technical Innovation Funds for the Sci-Tech Enterprise of Jiangsu Province,China
文摘The effects of Si doping on morphology, components and structure characteristics of CVD diamond films were studied. Si-doped CVD diamond films were deposited on Si substrate by adding tetraethoxysilane (TEOS) into acetone as source of reactant gas. The morphology and microstructure of diamond films were characterized by scanning electron microcopy (SEM). The crystalline quality of diamond films was studied by Raman spectroscopy and X-ray diffractometry (XRD). The surface roughness of the films was evaluated with surface profilometer. The results suggest that Si doping tends to reduce the crystallite size, enhance grain refinement and inhibit the appearance of (11 I) facets. Raman spectra indicate that Si doping can enhance the formation of sp2 phase in diamond films. Moreover, Raman signal of SiC was detected, which suggests the existence of Si in the diamond films. Smooth fine-grained diamond (SFGD) film was synthesized at Si to C ratio of 1%.
基金the National Natural Science Foundation of China (Grant Nos. 10474083, 50472051, 50532020, 50672081)the National Basic Research Program of China (Grant No. 2005CB724400)
文摘Boron-substituted carbon powder, B x C1?x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared B x C1?x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10–20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize approximately at 620°C and has a higher oxidation resistance than carbon.
基金the National Natural Science Foundation of China (No. 50975177)the Shanghai Scienceand Technology Plan of Action for Technical Standardsfor Innovation and Special (No. 08DZ0501700)
文摘The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting properties of as-deposited MCD and FGD films coated silicon nitride (Si3N4) inserts are comparatively investigated in this study. The scanning electron microscopy (SEM) and Raman spectroscopy are adopted to studythe characterization of the deposited diamond films. The friction tests are conducted on a ball-on-plate typereciprocating friction tester in ambient air using Co-cemented tungsten carbide (WC-Co), Si3N4 and ball-bearing steel (BBS) balls as the mating materials of the diamond films. For sliding against WC-Co, Si3N4 and BBS,the FGD film presents lower friction coeffcients than the MCD film. However, after sliding against Si3N4, the FGD film is subject to more severe wear than the MCD film. The cutting performance of as-deposited MCD and FGD coated Si3N4 inserts is examined in dry turning glass fiber reinforced plastics (GFRP) composite materials,comparing with the uncoated Si3N4 insert. The results indicate that the lifetime of Si3N4 inserts can be prolonged by depositing the MCD or FGD film on them and the FGD coated insert shows longer cutting lifetime than the MCD coated one.
基金the National Natural Science Foundation of China (No. 50975177)
文摘Tribological properties of chemical vapor deposition (CVD) diamond films greatly affect its application in the mechanical field. In this paper, a novel multilayer structure is proposed, with which multilayer diamond films are deposited on silicon carbide by hot filament CVD (HFCVD) method. The different micrometric diamond grains are produced by adjusting deposition parameters. The as-deposited multilayer diamond films are characterized by scanning electron microscope (SEM) and white-light interferometry. The friction tests performed on a reciprocating ball-on-plate tribometer suggest that silicon carbide presents the friction coefficient of 0.400 for dry sliding against silicon nitride (Si3N4) ceramic counterface. With the water lubrication, the corresponding friction coefficients of silicon carbide and as-deposited multilayer diamond films further reduce to 0.193 and 0.051, respectively. The worn surfaces indicate that multilayer diamond films exhibit considerably high wear resistance.
基金the Important National Science and Technology Specific Projects(No.2012ZX04003-031)
文摘In this study, the temperature and gas velocity distributions in hot filament chemical vapor deposition(HFCVD) diamond film growth on the end surfaces of seals are simulated by the finite volume method. The influence of filament diameter, filament separation and rotational speed of the substrates is considered. Firstly,the simulation model is established by simplifying operating conditions to simulate the temperature and gas velocity distributions. Thereafter, the deposition parameters are optimized as 0.6 mm filament diameter, 18 mm filament separation and 5 r/min rotational speed to get the uniform temperature distribution. Under the influence of the rotational speed, the difference between temperature gradients along the directions perpendicular to the filament and parallel to the filament becomes narrow, it is consistent with the actual condition, and the maximum temperature difference on the substrates decreases to 7.4?C. Furthermore, the effect of the rotational speed on the gas velocity distribution is studied. Finally, diamond films are deposited on the end surfaces of Si C seals with the optimized deposition parameters. The characterizations by scanning electron microscopy(SEM) and Raman spectroscopy exhibit a layer of homogeneous diamond films with fine-faceted crystals and uniform thickness. The results validate the simulation model.
基金Project(2012ZX04003-031)supported by the National Science and Technology Major Project,China
文摘The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentration. Orthogonal experiments were introduced to study the comprehensive effects of such three parameters on diamond films deposited on WC-Co substrates. Field emission scanning electron microscopy, atomic force microscopy and Raman spectrum were employed to analyze the morphology, growth rate and composition of as-deposited diamond films. The morphology varies from pyramidal to cluster features with temperature decreasing. It is found that the low total pressure is suitable for nano-crystalline diamond films growth. Moreover, the substrate temperature and total pressure have combined influence on the growth rate of the diamond films.
基金Projects(51275302,51005154)supported by the National Natural Science Foundation of China
文摘Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.
基金Project(21271188)supported by the National Natural Science Foundation of ChinaProject(2012M521541)supported by the China Postdoctoral Science Foundation,China+2 种基金Project(2012QNZT002)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20110933K)supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(CSUZC2013016)supported by the Open-End Fund for Valuable and Precision Instruments of Central South University,China
文摘A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical bonding states, phase composition and electrochemical properties of each deposited sample were studied by scanning electron microscopy, Raman spectra, X-ray diffraction, microhardness indentation, and electrochemical analysis. Results show that the average grain size of diamond and the growth rate decrease with increasing the B/C ratio. The diamond films exhibit excellent adhesion under Vickers microhardness testing (9.8 N load). The sample with 2% B/C ratio has a wider potential window and a lower background current as well as a faster redox reaction rate in H2SO4 solution and KFe(CN)6 redox system compared with other doping level electrodes.
基金Project(20130073110036)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Amorphous Si O2(a-Si O2) films were synthesized on WC-Co substrates with H2 and tetraethoxysilane(TEOS) via pyrolysis of molecular precursor.X-ray diffraction(XRD) pattern shows that silicon-cobalt compounds form at the interface between a-Si O2 films and WC-Co substrates.Moreover,it is observed by transmission electron microscope(TEM) that the a-Si O2 films are composed of hollow mirco-spheroid a-Si O2 particles.Subsequently,the a-Si O2 films are used as intermediate films and chemical vapor deposition(CVD) diamond films are deposited on them.Indentation tests were performed to evaluate the adhesion of bi-layer(a-Si O2 + diamond) films on cemented carbide substrates.And the cutting performance of bi-layer(a-Si O2 + diamond) coated inserts was evaluated by machining the glass fiber reinforced plastic(GFRP).The results show that a-Si O2 interlayers can greatly improve the adhesive strength of diamond films on cemented carbide inserts;furthermore,thickness of the a-Si O2 interlayers plays a significant role in their effectiveness on adhesion enhancement of diamond films.
基金Project(51375011)supported by the National Natural Science Foundation of ChinaProject(15cxy49)supported by the Shanghai Municipal Education Commission,ChinaProject(16PJ025)supported by the Shanghai Pujiang Program,China
文摘Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of deposition temperature on the properties of the boron-doped diamond films on tungsten carbide substrate was investigated.It is found that boron doping obviously enhances the growth rate of diamond films.A relatively high growth rate of 544 nm/h was obtained for the BDD film deposited on the tungsten carbide at 650°C.The added boron-containing precursor gas apparently reduced activation energy of film growth to be 53.1 kJ/mol,thus accelerated the rate of deposition chemical reaction.Moreover,Raman and XRD analysis showed that heavy boron doping(750 and 850°C)deteriorated the diamond crystallinity and produced a high defect density in the BDD films.Overall,600-700°C is found to be an optimum substrate temperature range for depositing BDD films on tungsten carbide substrate.