Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er...Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design ...An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design approach to the blanket design process.It indicates that fusion blanket design is affected by universal functions based on iterations.Three aspects are worth more attention from fusion engineers in the future.The first factor is that the iterations on the material fractions affect not only structure scheme but also TBR variation.The second factor is the cooling condition affecting final TBR due to the change of the structure material proportion.The third factor is temperature field related to the tritium release.In particular,it is suggested that the statistical calculation of effective TBR must be under reasonable control of the blanket temperature field.This approach is novel for blanket engineering in development of a fusion reactor.展开更多
The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite numb...The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions.展开更多
Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment impro...Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.展开更多
According to the construction of current coal mine monitoring and control systems in China, the paper proposes three kinds of applicable schemes of integrating PLC and DCS systems with field bus technology to digitize...According to the construction of current coal mine monitoring and control systems in China, the paper proposes three kinds of applicable schemes of integrating PLC and DCS systems with field bus technology to digitize the system and to improve the flexibility and extent of the system. Essentially, the paper introduces the integration of FCS on I/O layers. Based on a real coal mine safety-monitoring and control system applied with a CAN field bus, the major technology of system relays and extensions is discussed. We believe that one of the most applicable methods is currently replacing the connection between function-stations and field-sensors with a CAN bus on I/0 layers for system integration.展开更多
Interwell connectivities are fundamental parameters required to manage waterfloods in oil reservoirs. Data-driven models, such as the capacitance-resistance model (CRM), are fast tools to estimate these parameters f...Interwell connectivities are fundamental parameters required to manage waterfloods in oil reservoirs. Data-driven models, such as the capacitance-resistance model (CRM), are fast tools to estimate these parameters from time-correlations of input (injection rates) and output (production rates) signals. Noise and structure of the input time-series impose limits on the information that can be extracted from a given data-set. This work uses the CRM to study general prescriptions for the design of input signals that enhance the information content of injection/production data in the estimation of well-to-well interactions. Numerical schemes and general features of the optimal input signal strategy are derived for this problem.展开更多
This paper presents the preliminary design of poloidal field power supply system of HT-7U super-conducting tokamak. With an emphasis on AC/DC power converter, DC circuit breaker, quench protection, harmonic suppressio...This paper presents the preliminary design of poloidal field power supply system of HT-7U super-conducting tokamak. With an emphasis on AC/DC power converter, DC circuit breaker, quench protection, harmonic suppression and static var. compensation, and AC power system, the design principle and features are introduced, the design scheme and R & D progress are described, the simulation studies and laboratory test are presented too.展开更多
The shape optimization is studied by adopting the domain integrated method which is based on the calculus of variations during the shape design sensitivity analysis. A new method of improving the efficiency of the de...The shape optimization is studied by adopting the domain integrated method which is based on the calculus of variations during the shape design sensitivity analysis. A new method of improving the efficiency of the design velocity field analysis and the quality of the finite element method (FEM) mesh is put forward. The sensitivity analysis which is based on the calculus of variations is used in the shape optimization. The design velocity field is solved by Herrmann method. An example shows that both the quality of the FEM mesh and the efficiency of the computing of the design velocity field are improved by Herrmann method. So the effect and the efficiency of the shape optimization are guaranteed. If using sensitivity analysis which is based on the calculus of variations in the shape optimization, the sensitivity analysis can be a relatively independent module. The efficiency of computing the design velocity field and the quality of mesh will be improved by using Herrmann method.展开更多
HT7U is a large fusion experimental device. It will be built in the Institute of Plasma Physics of Chinese Academy of Sciences. The mission of HT-7U is to develop the scientific basis for a continuously operating toka...HT7U is a large fusion experimental device. It will be built in the Institute of Plasma Physics of Chinese Academy of Sciences. The mission of HT-7U is to develop the scientific basis for a continuously operating tokama-k fusion reactor. This paper describes only a toroidal field (TF) superconducting magnet system of HT7U. In this paper, design criteria of conductor and stability analysis, coil winding and support structure design of magnet system, mechanical calculation and stress analysis, heat load evaluation are given.展开更多
This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrog...This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrogen storage and delivery system, the hydrogen leakage alarm system were developed. The real-time distributed control and diagnosis system based on the Time Trigger Controller Area Network (TTCAN) with 10 ms basic control period was developed. The concept and implementation of processor (or controller) monitor and process (or task) monitor technique based on the TYCAN were applied in this paper. The fault tolerant control algorithm of the fuel cell engine and the battery man- agement system were considered. The demonstration experience verified that the fault tolerant control was very important for the fuel cell city bus.展开更多
In the paper the three-dimensional flow fields are numerically simulated in the vertical-shaft mechanical mix tank of a water treatment plant by means of FLUENT software based on the method of Computational Fluid Dyna...In the paper the three-dimensional flow fields are numerically simulated in the vertical-shaft mechanical mix tank of a water treatment plant by means of FLUENT software based on the method of Computational Fluid Dynamics (CFD). The influences of design parameters on flow fields and the mixing effect are analyzed. Firstly,the prediction capability of the turbulence model adopted in simulations is evaluated. And then,the mesh independence is checked up. Finally,the flow fields in various dimensionless blade diameters and dimensionless shaft spans are numerically simulated respectively. The results have shown that the numerical simulation method based on CFD is a feasible assistance for the optimal designs of mixers. Moreover,the optimal design of the blade diameter should take into account both the flow field and the power consumption. The optimization of the shaft span is to achieve a relatively even distribution of the flow field without any rupture. With the consideration of an optimal design,the dimensionless blade diameter and dimensionless shaft span should be 0.45 and 0.57 respectively in the case.展开更多
Two design axioms and axiomatic approach were discussed. As an example of application, design process of a new style single prop was illustrated in term of axi- oms.
Driving is a highly demanding and responsible job in which both the driver and passengers are exposed to several occupational risks. However, poor design of driver’s workplace is a major risk factor responsible for t...Driving is a highly demanding and responsible job in which both the driver and passengers are exposed to several occupational risks. However, poor design of driver’s workplace is a major risk factor responsible for the uncomfortable conditions which operators of this highly technological system are exposed to especially when engaged in long distance driving. This study aimed at developing anthropometric model for business bus drivers in Nigerian which would facilitate sustainable design of driver’s workplace. A sample size of 161 drivers was randomly selected among strata of operators of buses in selected motor parks in the study area for the ergonomic study. Twelve anthropometric data were collected and analysed to obtain their 5th, 50th and 95th percentiles with which the anthropometric model were developed. Anthropometric model developed from 1932 data points was presented in forms of table showing measurement of sitting driver’s body parts in his workspace indicating design for average as well as extremities of 5th and 95th percentiles. The model represents a database from which designers, manufacturers of equipment, machine, automobiles and household goods can obtain relevant body measurement of the population under study in relation relevant to specific product feature and for development of sustainable workspace design.展开更多
This paper presents quiet zone design using ultrasonic transducers for local active control in pure tone diffuse fields. Most of researches in local active noise control used conventional loudspeakers for the secondar...This paper presents quiet zone design using ultrasonic transducers for local active control in pure tone diffuse fields. Most of researches in local active noise control used conventional loudspeakers for the secondary sources to produce quiet zones. Recently ultrasonic transducers have been used for the secondary sources to control the plane wave in active noise control. However there is no research related to active noise control in diffuse fields using ultrasonic transducers. Therefore this study uses ultrasonic transducers for the secondary sources to control the diffuse fields. The quiet zone produced using ultrasonic transducers in single tone diffuse fields has been analyzed through simulations in this work. The results showed that quiet zones created using ultrasonic transducers were larger than those created using conventional loudspeakers. This is due to the fact that the audible sound pressure produced by the ultrasonic transducers decays slowly with the distance. Therefore the secondary field created by an ultrasonic transducer could fit the primary field better and the larger zone of quiet could be obtained using the ultrasonic transducer. Also the audible sound produced by the ultrasonic transducers is directional;therefore the sound pressure amplification outside the quiet zones was lower.展开更多
In this paper, we conduct research on development of aesthetic interaction and interaction design theory and the applications on art design fi eld. In this article to discuss the experience and the depth of the aesthe...In this paper, we conduct research on development of aesthetic interaction and interaction design theory and the applications on art design fi eld. In this article to discuss the experience and the depth of the aesthetic object is limited in the fi eld of aesthetics, although both clearly show their subject or object, but if points in general is easy to fall into the quagmire of subjective idealism and mechanical materialism, it is off the aesthetic realm. It is on the basis of the unity between subject and object of this essay, it is in this, experience and the depth of the aesthetic object is worth exploring the intersection. Organizational communication and the reception aesthetics in their own unique research perspective and multi-disciplinary background, in the organization and the role of aesthetic gradually revealed, integration and interaction of the two is the inevitable trend of development. Under this basis, we propose the corresponding issues as the implementation that is meaningful.展开更多
Wound field switched flux(WFSF)machines exhibits characteristics of the simple robust rotor,flexible flux-adjustable capability,and no risk of demagnetization.However,they suffer from a poor torque density compared wi...Wound field switched flux(WFSF)machines exhibits characteristics of the simple robust rotor,flexible flux-adjustable capability,and no risk of demagnetization.However,they suffer from a poor torque density compared with permanent magnet machines due to the saturation.Therefore,in this paper,two WFSF machines with single-and double-layer DC windings,respectively,are optimized for the maximum torque.The end-winding(EW)lengths differ in these two machines,which can affect the optimal design.Design parameters including the DC to armature winding copper loss ratio,slot area ratio and split ratio are optimized when two machines have the same copper loss and overall sizes.In addition,the influence of the flux density ratio,total copper loss,air-gap length and aspect ratio on the optimal split ratio is investigated using the finite element method and results are explained through the analytical model accounting for the saturation.It is discovered that the EWs have no effect on the optimal copper loss ratio,which is unity.In terms of the slot area ratio,the machine with single-layer DC windings prefers smaller DC slot areas than armature slot areas.In the WFSF machine with longer EWs,the optimal split ratio becomes smaller.Moreover,compared with other parameters,the flux density ratio can significantly affect the optimal split ratio.展开更多
Performance of the proton exchange membrane fuel cell(PEMFC)is appreciably affected by the channel geometry.The branching structure of a plant leaf and human lung is an efficient network to distribute the nutrients in...Performance of the proton exchange membrane fuel cell(PEMFC)is appreciably affected by the channel geometry.The branching structure of a plant leaf and human lung is an efficient network to distribute the nutrients in the respective systems.The same nutrient transport system can be mimicked in the flow channel design of a PEMFC,to aid even reactant distribution and better water management.In this work,the effect of bio-inspired flow field designs such as lung and leaf channel design bipolar plates,on the performance of a PEMFC was examined experimentally at various operating conditions.A PEMFC of 49 cm2 area,with a Nafion 212 membrane with a 40%catalyst loading of 0.4 mg·cm-2 on the anode side and also 0.6 mg·cm-2 on the cathode side is assembled by incorporating the bio-inspired channel bipolar plate,and was tested on a programmable fuel-cell test station.The impact of the working parameters like reactants’relative humidity(RH),back pressure and fuel cell temperature on the performance of the fuel cell was examined;the operating pressure remains constant at 0.1 MPa.It was observed that the best performance was attained at a back pressure of 0.3 MPa,75°C operating temperature and 100%RH.The three flow channels were also compared at different operating pressures ranging from 0.1 MPa to 0.3 MPa,and the other parameters such as operating temperature,RH and back pressure were set as 75°C,100%and 0.3 MPa.The experimental outcomes of the PEMFC with bio-inspired channels were compared with the experimental results of a conventional triple serpentine flow field.It was observed that among the different flow channel designs considered,the leaf channel design gives the best output in terms of power density.Further,the experimental results of the leaf channel design were compared with those of the interdigitated leaf channel design.The PEMFC with the interdigitated leaf channel design was found to generate 6.72%more power density than the non-interdigitated leaf channel design.The fuel cell with interdigitated leaf channel design generated5.58%more net power density than the fuel cell with non-interdigitated leaf channel design after considering the parasitic losses.展开更多
基金funded by Shanghai Natural Science Foundation(No.12ZR1414700)。
文摘Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金supported by the Project for Scientific Research of West Anhui University(No.00701092282)。
文摘An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design approach to the blanket design process.It indicates that fusion blanket design is affected by universal functions based on iterations.Three aspects are worth more attention from fusion engineers in the future.The first factor is that the iterations on the material fractions affect not only structure scheme but also TBR variation.The second factor is the cooling condition affecting final TBR due to the change of the structure material proportion.The third factor is temperature field related to the tritium release.In particular,it is suggested that the statistical calculation of effective TBR must be under reasonable control of the blanket temperature field.This approach is novel for blanket engineering in development of a fusion reactor.
基金supported by the National Science Foundation CA-REER Grant(Grant No.2145392)the startup funding at Syracuse Uni-versity for supporting the research work.
文摘The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions.
基金Project(50878111) supported by the National Natural Science Foundation of China
文摘Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.
文摘According to the construction of current coal mine monitoring and control systems in China, the paper proposes three kinds of applicable schemes of integrating PLC and DCS systems with field bus technology to digitize the system and to improve the flexibility and extent of the system. Essentially, the paper introduces the integration of FCS on I/O layers. Based on a real coal mine safety-monitoring and control system applied with a CAN field bus, the major technology of system relays and extensions is discussed. We believe that one of the most applicable methods is currently replacing the connection between function-stations and field-sensors with a CAN bus on I/0 layers for system integration.
基金financial support and to the Center for Petroleum Asset Risk Management of the University of Texas at Austin for hospitality and an exciting research environment
文摘Interwell connectivities are fundamental parameters required to manage waterfloods in oil reservoirs. Data-driven models, such as the capacitance-resistance model (CRM), are fast tools to estimate these parameters from time-correlations of input (injection rates) and output (production rates) signals. Noise and structure of the input time-series impose limits on the information that can be extracted from a given data-set. This work uses the CRM to study general prescriptions for the design of input signals that enhance the information content of injection/production data in the estimation of well-to-well interactions. Numerical schemes and general features of the optimal input signal strategy are derived for this problem.
文摘This paper presents the preliminary design of poloidal field power supply system of HT-7U super-conducting tokamak. With an emphasis on AC/DC power converter, DC circuit breaker, quench protection, harmonic suppression and static var. compensation, and AC power system, the design principle and features are introduced, the design scheme and R & D progress are described, the simulation studies and laboratory test are presented too.
文摘The shape optimization is studied by adopting the domain integrated method which is based on the calculus of variations during the shape design sensitivity analysis. A new method of improving the efficiency of the design velocity field analysis and the quality of the finite element method (FEM) mesh is put forward. The sensitivity analysis which is based on the calculus of variations is used in the shape optimization. The design velocity field is solved by Herrmann method. An example shows that both the quality of the FEM mesh and the efficiency of the computing of the design velocity field are improved by Herrmann method. So the effect and the efficiency of the shape optimization are guaranteed. If using sensitivity analysis which is based on the calculus of variations in the shape optimization, the sensitivity analysis can be a relatively independent module. The efficiency of computing the design velocity field and the quality of mesh will be improved by using Herrmann method.
文摘HT7U is a large fusion experimental device. It will be built in the Institute of Plasma Physics of Chinese Academy of Sciences. The mission of HT-7U is to develop the scientific basis for a continuously operating tokama-k fusion reactor. This paper describes only a toroidal field (TF) superconducting magnet system of HT7U. In this paper, design criteria of conductor and stability analysis, coil winding and support structure design of magnet system, mechanical calculation and stress analysis, heat load evaluation are given.
文摘This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrogen storage and delivery system, the hydrogen leakage alarm system were developed. The real-time distributed control and diagnosis system based on the Time Trigger Controller Area Network (TTCAN) with 10 ms basic control period was developed. The concept and implementation of processor (or controller) monitor and process (or task) monitor technique based on the TYCAN were applied in this paper. The fault tolerant control algorithm of the fuel cell engine and the battery man- agement system were considered. The demonstration experience verified that the fault tolerant control was very important for the fuel cell city bus.
基金Sponsored by the Science and Technology Projects of Heilongjiang Province (Grant No.GB07C20202 and LC06C16)
文摘In the paper the three-dimensional flow fields are numerically simulated in the vertical-shaft mechanical mix tank of a water treatment plant by means of FLUENT software based on the method of Computational Fluid Dynamics (CFD). The influences of design parameters on flow fields and the mixing effect are analyzed. Firstly,the prediction capability of the turbulence model adopted in simulations is evaluated. And then,the mesh independence is checked up. Finally,the flow fields in various dimensionless blade diameters and dimensionless shaft spans are numerically simulated respectively. The results have shown that the numerical simulation method based on CFD is a feasible assistance for the optimal designs of mixers. Moreover,the optimal design of the blade diameter should take into account both the flow field and the power consumption. The optimization of the shaft span is to achieve a relatively even distribution of the flow field without any rupture. With the consideration of an optimal design,the dimensionless blade diameter and dimensionless shaft span should be 0.45 and 0.57 respectively in the case.
文摘Two design axioms and axiomatic approach were discussed. As an example of application, design process of a new style single prop was illustrated in term of axi- oms.
文摘Driving is a highly demanding and responsible job in which both the driver and passengers are exposed to several occupational risks. However, poor design of driver’s workplace is a major risk factor responsible for the uncomfortable conditions which operators of this highly technological system are exposed to especially when engaged in long distance driving. This study aimed at developing anthropometric model for business bus drivers in Nigerian which would facilitate sustainable design of driver’s workplace. A sample size of 161 drivers was randomly selected among strata of operators of buses in selected motor parks in the study area for the ergonomic study. Twelve anthropometric data were collected and analysed to obtain their 5th, 50th and 95th percentiles with which the anthropometric model were developed. Anthropometric model developed from 1932 data points was presented in forms of table showing measurement of sitting driver’s body parts in his workspace indicating design for average as well as extremities of 5th and 95th percentiles. The model represents a database from which designers, manufacturers of equipment, machine, automobiles and household goods can obtain relevant body measurement of the population under study in relation relevant to specific product feature and for development of sustainable workspace design.
文摘This paper presents quiet zone design using ultrasonic transducers for local active control in pure tone diffuse fields. Most of researches in local active noise control used conventional loudspeakers for the secondary sources to produce quiet zones. Recently ultrasonic transducers have been used for the secondary sources to control the plane wave in active noise control. However there is no research related to active noise control in diffuse fields using ultrasonic transducers. Therefore this study uses ultrasonic transducers for the secondary sources to control the diffuse fields. The quiet zone produced using ultrasonic transducers in single tone diffuse fields has been analyzed through simulations in this work. The results showed that quiet zones created using ultrasonic transducers were larger than those created using conventional loudspeakers. This is due to the fact that the audible sound pressure produced by the ultrasonic transducers decays slowly with the distance. Therefore the secondary field created by an ultrasonic transducer could fit the primary field better and the larger zone of quiet could be obtained using the ultrasonic transducer. Also the audible sound produced by the ultrasonic transducers is directional;therefore the sound pressure amplification outside the quiet zones was lower.
文摘In this paper, we conduct research on development of aesthetic interaction and interaction design theory and the applications on art design fi eld. In this article to discuss the experience and the depth of the aesthetic object is limited in the fi eld of aesthetics, although both clearly show their subject or object, but if points in general is easy to fall into the quagmire of subjective idealism and mechanical materialism, it is off the aesthetic realm. It is on the basis of the unity between subject and object of this essay, it is in this, experience and the depth of the aesthetic object is worth exploring the intersection. Organizational communication and the reception aesthetics in their own unique research perspective and multi-disciplinary background, in the organization and the role of aesthetic gradually revealed, integration and interaction of the two is the inevitable trend of development. Under this basis, we propose the corresponding issues as the implementation that is meaningful.
基金supported in part by the National Key R&D Program of China under 2019YFB1503700by the National Natural Science Foundation of China under Grant 51677169。
文摘Wound field switched flux(WFSF)machines exhibits characteristics of the simple robust rotor,flexible flux-adjustable capability,and no risk of demagnetization.However,they suffer from a poor torque density compared with permanent magnet machines due to the saturation.Therefore,in this paper,two WFSF machines with single-and double-layer DC windings,respectively,are optimized for the maximum torque.The end-winding(EW)lengths differ in these two machines,which can affect the optimal design.Design parameters including the DC to armature winding copper loss ratio,slot area ratio and split ratio are optimized when two machines have the same copper loss and overall sizes.In addition,the influence of the flux density ratio,total copper loss,air-gap length and aspect ratio on the optimal split ratio is investigated using the finite element method and results are explained through the analytical model accounting for the saturation.It is discovered that the EWs have no effect on the optimal copper loss ratio,which is unity.In terms of the slot area ratio,the machine with single-layer DC windings prefers smaller DC slot areas than armature slot areas.In the WFSF machine with longer EWs,the optimal split ratio becomes smaller.Moreover,compared with other parameters,the flux density ratio can significantly affect the optimal split ratio.
文摘Performance of the proton exchange membrane fuel cell(PEMFC)is appreciably affected by the channel geometry.The branching structure of a plant leaf and human lung is an efficient network to distribute the nutrients in the respective systems.The same nutrient transport system can be mimicked in the flow channel design of a PEMFC,to aid even reactant distribution and better water management.In this work,the effect of bio-inspired flow field designs such as lung and leaf channel design bipolar plates,on the performance of a PEMFC was examined experimentally at various operating conditions.A PEMFC of 49 cm2 area,with a Nafion 212 membrane with a 40%catalyst loading of 0.4 mg·cm-2 on the anode side and also 0.6 mg·cm-2 on the cathode side is assembled by incorporating the bio-inspired channel bipolar plate,and was tested on a programmable fuel-cell test station.The impact of the working parameters like reactants’relative humidity(RH),back pressure and fuel cell temperature on the performance of the fuel cell was examined;the operating pressure remains constant at 0.1 MPa.It was observed that the best performance was attained at a back pressure of 0.3 MPa,75°C operating temperature and 100%RH.The three flow channels were also compared at different operating pressures ranging from 0.1 MPa to 0.3 MPa,and the other parameters such as operating temperature,RH and back pressure were set as 75°C,100%and 0.3 MPa.The experimental outcomes of the PEMFC with bio-inspired channels were compared with the experimental results of a conventional triple serpentine flow field.It was observed that among the different flow channel designs considered,the leaf channel design gives the best output in terms of power density.Further,the experimental results of the leaf channel design were compared with those of the interdigitated leaf channel design.The PEMFC with the interdigitated leaf channel design was found to generate 6.72%more power density than the non-interdigitated leaf channel design.The fuel cell with interdigitated leaf channel design generated5.58%more net power density than the fuel cell with non-interdigitated leaf channel design after considering the parasitic losses.