A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface po...A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.展开更多
Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the str...Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the structural safety of tunnels in water-rich regions.In this paper,a tunnel seepage model testing system was used to conduct experiments of the grouting circle and primary support with different permeability coefficients.The influences of the supporting structures on the water inflow laws and the distribution of the water pressure in the tunnel were analyzed.With the decrease in the permeability coefficient of the grouting circle or the primary support,the inflow rate of water into the tunnel showed a non-linear decreasing trend.In comparison,the water inflow reduction effect of grouting circle was much better than that of primary support.With the increase of the permeability coefficient of the grouting ring,the water pressure behind the primary lining increases gradually,while the water pressure behind the grouting ring decreases.Thus,the grouting of surrounding rock during the construction of water-rich tunnel can effectively weaken the hydraulic connection,reduce the influence range of seepage,and significantly reduce the decline of groundwater.Meanwhile,the seepage tests at different hydrostatic heads and hydrodynamic heads during tunnel operation period were also conducted.As the hydrostatic head decreased,the water pressure at each characteristic point decreased approximately linearly,and the water inflow rate also had a gradual downward trend.Under the action of hydrodynamic head,the water pressure had an obvious lagging effect,which was not conducive to the stability of the supporting structures,and it could be mitigated by actively regulating the drainage rate.Compared with the hydrostatic head,the hydrodynamic head could change the real-time rate of water inflow to the tunnel and broke the dynamic balance between the water pressure and water inflow rate,thereby affecting the stress state on the supporting structures.展开更多
The scattered fields of plane waves in a solid from a cylinder or sphere are critical in determining its acoustic characteristics as well as in engineering applications. This paper investigates the scattered field dis...The scattered fields of plane waves in a solid from a cylinder or sphere are critical in determining its acoustic characteristics as well as in engineering applications. This paper investigates the scattered field distributions of different incident waves created by elastic cylinders embedded in an elastic isotropic medium. Scattered waves, including longitudinal and transverse waves both inside and outside the cylinder, are described with specific modalities under an incident plane wave. A model with a scatterer embedded in a structural steel matrix and filled with aluminum is developed for comparison with the theoretical solution. The frequency of the plane wave ranged from 235 kHz to 2348 kHz, which corresponds to scaling factors from 0.5 to 5. Scattered field distributions in matrix materials blocked by an elastic cylindrical solid have been obtained by simulation or calculated using existing parameters. The simulation results are in good agreement with the theoretical solution, which supports the correctness of the simulation analysis. Furthermore, ultrasonic phased arrays are used to study scattered fields by changing the characteristics of the incident wave. On this foundation, a partial preliminary study of the scattered field distribution of double cylinders in a solid has been carried out, and the scattered field distribution at a given distance has been found to exhibit particular behaviors at different moments. Further studies on directivities and scattered fields are expected to improve the quantification of scattered images in isotropic solid materials by the phased array technique.展开更多
From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart'...From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk,but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore,the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field.展开更多
The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field dis...The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified.It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap.The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode.The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature,which is beneficial for industrial applications.This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD,which can provide some references for the development and applications of the DBD in the future.展开更多
A theory of the far spatial coherent-suppressed single-peak field distribution of a rectangular wave-guide CO2 laser is presented. The theoretical analysis shows that a rectangular wave-guide laser can have an output ...A theory of the far spatial coherent-suppressed single-peak field distribution of a rectangular wave-guide CO2 laser is presented. The theoretical analysis shows that a rectangular wave-guide laser can have an output intensity distribution in far field similar to that produced from a wave-guide array laser, which is in agreement with the experimental result. A single-peak mode output is obtained within 5 metres. The experimental far-field spread angle in the bigger-Fresnel number direction is 0.63 mrad, compared to the calculated one, 0.6 mrad, and when the length of the laser resonator is changed, a double-peak or multi-peak in far-field distribution of the laser is obtained.展开更多
In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission,...In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.展开更多
The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) e...The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.展开更多
The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection.Factors which determine the electric field distribution are not o...The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection.Factors which determine the electric field distribution are not only electric contact,but also intrinsic defects,especially grown-in twin boundaries.Here,the electric field distribution around twin boundaries is investigated in a CdZnTe bicrystal detector with a{111}–{111}twin plane using the Pockels electro-optic effect.The results of laser beam induced current pulses are also obtained by the transient current technique,and we discuss the influence of the twin boundary on the electric field evolution.These studies reveal a significant distortion of the electric field,which is attributed to the buildup of space charges at twin boundaries.Also,the position of these space charge regions depends on the polarity of the detector bias.An energy band model based on the formation of an n–n+–n junction across the twin boundary has been established to explain the observed results.展开更多
Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distr...Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distribution around core/shell NPs (a type of composite NPs) in ferrofluids under the influence of an external magnetic field. The NPs are made of cobalt (ferromagnetic) coated with gold (metallic). Under the influence of the external magnetic field, these NPs will align along the direction of this field, thus forming a chain of NPs. According to Laplace's equations, we obtain electric fields inside and outside the NPs as a function of the incident wavelength by taking into account the mutual interaction between the polarized NPs. Our calculation results show that the electric field distribution is closely related to the resonant incident wavelength, the metallic shell thickness, and the inter-particle distance. These analytical calculations agree well with our numerical simulation results. This kind of field-induced anisotropic soft-matter systems offers the possibility of obtaining an enhanced Raman scattering substrate due to enhanced electric fields.展开更多
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are sim...By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.展开更多
The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification...The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed.展开更多
Through the comparison of calcination conditions between cement preclinkering technology and cement precalcining technology,we studied the characteristics of temperature field distribution of cement preclinkering tech...Through the comparison of calcination conditions between cement preclinkering technology and cement precalcining technology,we studied the characteristics of temperature field distribution of cement preclinkering technology systems including cyclone preheater,preclinkering furnace,and rotary kiln.We used numericalsimulation method to obtain data of temperature field distribution.Some results are found by system study.The ratio of tailcoalof cement preclinkering technology is about 70%,and raw mealtemperature can reach 1070 ℃.Shorter L/D kiln type of preclinkering technology can obtain more stable calcining zone temperature.The highest solid temperature of cement preclinkering technology is higher than 80 ℃,and high temperature region(〉1450 ℃)length is 2 times,which is beneficialfor calcining clinker and higher clinker quality.So cement preclinkering technology can obtain more performance temperature filed,which improves both the solid-phase reaction and liquid-phase reaction.展开更多
Spray characteristics are the fundamental factors that affect droplet transportation downward,deposition,and drift.The downwash airflow field of the Unmanned Aviation Vehicle(UAV)primarily influences droplet depositio...Spray characteristics are the fundamental factors that affect droplet transportation downward,deposition,and drift.The downwash airflow field of the Unmanned Aviation Vehicle(UAV)primarily influences droplet deposition and drift by changing the spray characteristics.This study focused mainly on the effect of the downwash airflow field of the UAV and nozzle position on the droplet spatial distribution and velocity distribution,which are two factors of spray characteristics.To study the abovementioned characteristics,computational fluid dynamics based on the lattice Boltzmann method(LBM)was used to simulate the downwash airflow field of the DJI T30 six-rotor plant protection UAV at different rotor rotational speeds(1000-1800 r/min).A particle image velocimetry system(PIV)was utilized to record the spray field with the downwash airflow field at different rotational speeds of rotors(0-1800 r/min)or different nozzle positions(0,0.20 m,0.35 m,and 0.50 m from the motor).The simulation and experimental results showed that the rotor downwash airflow field exhibited the‘dispersion-shrinkage-redispersion’development rule.In the initial dispersion stage of rotor airflow,there were obvious high-vorticity and low-vorticity regions in the rotor downwash airflow field.Moreover,the low-vorticity region was primarily concentrated below the motor,and the high-vorticity region was mainly focused in the middle area of the rotors.Additionally,the Y-direction airflow velocity fluctuated at 0.4-1.2 m under the rotor.When the rotor airflow developed to 3.2 m below the rotor,the Y-direction airflow velocity showed a slight decrease.Above 3.2 m from the rotor,the Y-direction airflow velocity started to drastically decrease.Therefore,it is recommended that the DJI T30 plant protection UAV should not exceed 3.2 m in flight height during field spraying operations.The rotor downwash airflow field caused the nozzle atomization angle,droplet concentration,and spray field width to decrease while increasing the vortex scale in the spray field when the rotor system was activated.Moreover,the increase in rotor rotational speed promoted the abovementioned trend.When the nozzle was installed in various radial locations below the rotor,the droplet spatial distribution and velocity distribution were completely different.When the nozzle was installed directly below the motor,the droplet spatial distribution and velocity distribution were relatively symmetrical.When the nozzle was installed at 0.20 m and 0.35 m from the motor,the droplets clearly moved toward the right under the induction of stronger rotor vortices.This resulted in a higher droplet concentration in the right-half spray field.However,the droplet moved toward the left when the nozzle was installed in the rotor tip.For four nozzle positions,when the nozzle was installed at 0 or 0.20 m from the motor,the droplet average velocity was much higher.However,the droplet average velocity was slower when the nozzle was installed in the other two positions.Therefore,it is recommended that the nozzle is installed at 0 or 0.20 m from the motor.The research results could increase the understanding of the downwash airflow field distribution characteristics of the UAV and its influence on the droplet spatial distribution and velocity distribution characteristics.Meanwhile,the research results could provide some theoretical guidance for the choice of nozzle position below the rotor.展开更多
The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studie...The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.展开更多
Single-pulse and multi-pulse damage behaviors of "standard" (with A/4 stack structure) and "modified" (with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs, 800...Single-pulse and multi-pulse damage behaviors of "standard" (with A/4 stack structure) and "modified" (with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs, 800-nm Ti:sapphire laser system. Precise morphologies of damaged sites display strikingly different features when the samples are subjected to various number of incident pulses, which are explained reasonably by the standing-wave field distribution within the coatings. Meanwhile, the single-pulse laser-induced damage threshold of the "standard" mirror is improved by about 14% while suppressing the normalized electric field intensity at the outmost interface of the HfO2 and SiO2 layers by 37%. To discuss the damage mechanism, a theoretical model based on photoionization, avalanche ionization, and decays of electrons is adopted to simulate the evolution curves of the conduction-band electron densitv during r^ulse dHratian.展开更多
The image features, such as enhancements, shadows and lateral shadows, posterior to a tumor in a B-Mode diagnostic ultrasonography, are studied. The tumor is simplified as a homogeneous cylinder in an inhomogeneous me...The image features, such as enhancements, shadows and lateral shadows, posterior to a tumor in a B-Mode diagnostic ultrasonography, are studied. The tumor is simplified as a homogeneous cylinder in an inhomogeneous medium. Using the ray theory we derive the intensity in the region behind the cylinder. Taking the influences of sound attenuation and the time gain compensation of the B-Mode displyer into acount , we simulate with a computer five images corresponding to our experiments conducted with a tissue equivalent phantom. The theoratical images seem to be in good qualitative agreement with the experimental results.展开更多
The mechanism of magnetic nanoparticles(MNPs)affecting magnetic field uniformity is studied in this work.The spatial distribution of MNPs in liquid is simulated based on Monte Carlo method.The induced field of the sin...The mechanism of magnetic nanoparticles(MNPs)affecting magnetic field uniformity is studied in this work.The spatial distribution of MNPs in liquid is simulated based on Monte Carlo method.The induced field of the single MNP is combined with the magnetic field distribution of magnetofluid.In the simulation,magnetic field uniformity is described by a statistical distribution.As the chemical shift(CS)and full width at half maximum(FWHM)of magnetic resonance(MR)spectrum can reflect the uniformity of magnetic field,the simulation is verified by spectrum experiment.Simulation and measurement results prove that the CS and FWHM of the MR spectrum are basically positively correlated with the concentration of MNPs and negatively correlated with the temperature.The research results can explain how MNPs play a role in MR by affecting the uniform magnetic field,which is of great significance in improving the temperature measurement accuracy of magnetic nanothermometers and the spatial resolution of magnetic particle imaging.展开更多
In a superconducting CH (cross bar H mode) cavity, the method of regulating the length of a drift tube is employed to adjust the distribution of the accelerating field. In this article, we simulate the electromagnet...In a superconducting CH (cross bar H mode) cavity, the method of regulating the length of a drift tube is employed to adjust the distribution of the accelerating field. In this article, we simulate the electromagnetic field of a CH structure to illustrate the reason for adjusting the field distribution by varying drift tube length. Meanwhile, that the presence of the drift tube will cause a sharp rise in the maximum electric field is also shown. This phenomenon is contrary to superconducting cavity design principles in which the cavity geometry needs to be optimized to reduce the maximum electric field to avoid field emission. We propose a variable diameter superconducting CH cavity design to solve this conflict. The simulation of the variable diameter superconducting CH cavity shows that this method is feasible.展开更多
An analytical model of the electric field distributions of buried superjunction structures,based on the charge superposition method and Green's function approach,is derived.An accurate approximation of the exact anal...An analytical model of the electric field distributions of buried superjunction structures,based on the charge superposition method and Green's function approach,is derived.An accurate approximation of the exact analytical model of the vertical electric field is also proposed and demonstrated by numerical simulation.The influence of the dimension and doping concentration of each layer on the electric field is discussed in detail,and the breakdown voltage is demonstrated by simulations.展开更多
文摘A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.
基金supported by the Chongqing Natural Science Foundation(No.cstc2020jcyjmsxm X0904)the Chongqing Talent Plan(No.CQYC2020058263)+3 种基金the Chongqing Technology Innovation and Application Development Project(No.cstc2021ycjh-bgzxm0246)the China Postdoctoral Science Foundation(No.2021M693739)the Sichuan Science and Technology Program(No.2021YJ0539)the Natural Science foundation of Jiangsu higher education institutions of China(Grant No.19KJD170001)。
文摘Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the structural safety of tunnels in water-rich regions.In this paper,a tunnel seepage model testing system was used to conduct experiments of the grouting circle and primary support with different permeability coefficients.The influences of the supporting structures on the water inflow laws and the distribution of the water pressure in the tunnel were analyzed.With the decrease in the permeability coefficient of the grouting circle or the primary support,the inflow rate of water into the tunnel showed a non-linear decreasing trend.In comparison,the water inflow reduction effect of grouting circle was much better than that of primary support.With the increase of the permeability coefficient of the grouting ring,the water pressure behind the primary lining increases gradually,while the water pressure behind the grouting ring decreases.Thus,the grouting of surrounding rock during the construction of water-rich tunnel can effectively weaken the hydraulic connection,reduce the influence range of seepage,and significantly reduce the decline of groundwater.Meanwhile,the seepage tests at different hydrostatic heads and hydrodynamic heads during tunnel operation period were also conducted.As the hydrostatic head decreased,the water pressure at each characteristic point decreased approximately linearly,and the water inflow rate also had a gradual downward trend.Under the action of hydrodynamic head,the water pressure had an obvious lagging effect,which was not conducive to the stability of the supporting structures,and it could be mitigated by actively regulating the drainage rate.Compared with the hydrostatic head,the hydrodynamic head could change the real-time rate of water inflow to the tunnel and broke the dynamic balance between the water pressure and water inflow rate,thereby affecting the stress state on the supporting structures.
基金Supported by National Key R&D Program of China(Grant No.2016YFF0203000)State Key Program of National Natural Science Foundation of China(Grant No.11834008)+5 种基金National Natural Science Foundation of China(Grant Nos.11774167,61571222)Fundamental research funds for the Central Universities(Grant No.020414380001)State Key Laboratory of Acoustics,Chinese Academy of Science(Grant No.SKLA201809)Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701)AQSIQ technology R&D program(Grant No.2017QK125)Innovative Talents Program of Far East NDT New Technology&Application Forum
文摘The scattered fields of plane waves in a solid from a cylinder or sphere are critical in determining its acoustic characteristics as well as in engineering applications. This paper investigates the scattered field distributions of different incident waves created by elastic cylinders embedded in an elastic isotropic medium. Scattered waves, including longitudinal and transverse waves both inside and outside the cylinder, are described with specific modalities under an incident plane wave. A model with a scatterer embedded in a structural steel matrix and filled with aluminum is developed for comparison with the theoretical solution. The frequency of the plane wave ranged from 235 kHz to 2348 kHz, which corresponds to scaling factors from 0.5 to 5. Scattered field distributions in matrix materials blocked by an elastic cylindrical solid have been obtained by simulation or calculated using existing parameters. The simulation results are in good agreement with the theoretical solution, which supports the correctness of the simulation analysis. Furthermore, ultrasonic phased arrays are used to study scattered fields by changing the characteristics of the incident wave. On this foundation, a partial preliminary study of the scattered field distribution of double cylinders in a solid has been carried out, and the scattered field distribution at a given distance has been found to exhibit particular behaviors at different moments. Further studies on directivities and scattered fields are expected to improve the quantification of scattered images in isotropic solid materials by the phased array technique.
文摘From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk,but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore,the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field.
基金supported by the Science and Technology Innovation Commission of Shenzhen(No.JCYJ20180507181858539)Shenzhen Science and Technology Program(No.KQTD20180412181422399)the National Key R&D Program of China(No.2019YFB2204500).
文摘The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified.It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap.The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode.The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature,which is beneficial for industrial applications.This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD,which can provide some references for the development and applications of the DBD in the future.
文摘A theory of the far spatial coherent-suppressed single-peak field distribution of a rectangular wave-guide CO2 laser is presented. The theoretical analysis shows that a rectangular wave-guide laser can have an output intensity distribution in far field similar to that produced from a wave-guide array laser, which is in agreement with the experimental result. A single-peak mode output is obtained within 5 metres. The experimental far-field spread angle in the bigger-Fresnel number direction is 0.63 mrad, compared to the calculated one, 0.6 mrad, and when the length of the laser resonator is changed, a double-peak or multi-peak in far-field distribution of the laser is obtained.
基金Project supported by CAST Innovation Fund (Grant No.CAST-BISEE2019-040)。
文摘In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.40876094 and JQ10974106)the National High Technology Research and Development Program of China(Grant Nos.2009AA09Z102 and 2008AA09A403)+1 种基金the Excellent Youth Fundation of Shandong Scientific Committee,China(Grant No.JQ201018)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2009AZ002)
文摘The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1631116 and 51702271)the National Key Research and Development Program of China(Grant No.2016YFE0115200)+3 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017KW-029)Austrian Academic Exchange Service(ÖD-WTZ)through project CN 02/2016the Fundamental Research Funds for the Central Universities of China(Grant Nos.3102017zy057 and 3102018jcc036)the Young and Middle-aged Teachers Education and Scientific Research Foundation of Fujian Province,China(Grant No.JAT170407)
文摘The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection.Factors which determine the electric field distribution are not only electric contact,but also intrinsic defects,especially grown-in twin boundaries.Here,the electric field distribution around twin boundaries is investigated in a CdZnTe bicrystal detector with a{111}–{111}twin plane using the Pockels electro-optic effect.The results of laser beam induced current pulses are also obtained by the transient current technique,and we discuss the influence of the twin boundary on the electric field evolution.These studies reveal a significant distortion of the electric field,which is attributed to the buildup of space charges at twin boundaries.Also,the position of these space charge regions depends on the polarity of the detector bias.An energy band model based on the formation of an n–n+–n junction across the twin boundary has been established to explain the observed results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11104252 and 11222544)the Science Fund of the Ministry of Education of China(Grant No.20114101110003)+6 种基金the Fund for Science and Technology Innovation Team of Zhengzhou City(2011-03)the Aeronautical Science Foundation of China(Grant No.2011ZF55015)the Basic and Frontier Technology Research Program of Henan Province,China(Grant Nos.112300410264 and 122300410162)the Cooperation Fund with Fudan University,China(Grant No.KL2011-01)the Fok Ying Tung Education Foundation,China(GrantNo.131008)the Program for New Century Excellent Talents in University(Grant No.NCET-12-0121)the National Key Basic Research Program of China(Grant No.2011CB922004)
文摘Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distribution around core/shell NPs (a type of composite NPs) in ferrofluids under the influence of an external magnetic field. The NPs are made of cobalt (ferromagnetic) coated with gold (metallic). Under the influence of the external magnetic field, these NPs will align along the direction of this field, thus forming a chain of NPs. According to Laplace's equations, we obtain electric fields inside and outside the NPs as a function of the incident wavelength by taking into account the mutual interaction between the polarized NPs. Our calculation results show that the electric field distribution is closely related to the resonant incident wavelength, the metallic shell thickness, and the inter-particle distance. These analytical calculations agree well with our numerical simulation results. This kind of field-induced anisotropic soft-matter systems offers the possibility of obtaining an enhanced Raman scattering substrate due to enhanced electric fields.
基金Projected supported by the National Natural Science Foundation of China(Grant No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110131110005)
文摘By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.
基金Project(2009CB724504)supported by the National Basic Research Program of China
文摘The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed.
基金Funded by the Major State Basic Research Perelopment Program of China(973 Program)(No.2009CB623102)the Key Fund Project of Sichuan Provincial Department of Education(No.14ZA0086)the Key Fund Project of Professional Scientific Research Innovation Team of Southwest University of Science and Technology(No.14tdfk01)
文摘Through the comparison of calcination conditions between cement preclinkering technology and cement precalcining technology,we studied the characteristics of temperature field distribution of cement preclinkering technology systems including cyclone preheater,preclinkering furnace,and rotary kiln.We used numericalsimulation method to obtain data of temperature field distribution.Some results are found by system study.The ratio of tailcoalof cement preclinkering technology is about 70%,and raw mealtemperature can reach 1070 ℃.Shorter L/D kiln type of preclinkering technology can obtain more stable calcining zone temperature.The highest solid temperature of cement preclinkering technology is higher than 80 ℃,and high temperature region(〉1450 ℃)length is 2 times,which is beneficialfor calcining clinker and higher clinker quality.So cement preclinkering technology can obtain more performance temperature filed,which improves both the solid-phase reaction and liquid-phase reaction.
基金financially supported by the 111 Project(Grant No.D18019)Laboratory of Lingnan Modern Agriculture Project(Grant No.NT2021009)+4 种基金the Leading Talents of Guangdong Province Program(Grant No.2016LJ06G689)the National Natural Science Foundation of China(Grant No.32271985)the Natural Science Foundation of Guangdong Province(Grant No.2022A 1515011008No.2022A1515011535)Liaoning Provincial Education Department Key Research Project(Grant No.LSNZD 202005).
文摘Spray characteristics are the fundamental factors that affect droplet transportation downward,deposition,and drift.The downwash airflow field of the Unmanned Aviation Vehicle(UAV)primarily influences droplet deposition and drift by changing the spray characteristics.This study focused mainly on the effect of the downwash airflow field of the UAV and nozzle position on the droplet spatial distribution and velocity distribution,which are two factors of spray characteristics.To study the abovementioned characteristics,computational fluid dynamics based on the lattice Boltzmann method(LBM)was used to simulate the downwash airflow field of the DJI T30 six-rotor plant protection UAV at different rotor rotational speeds(1000-1800 r/min).A particle image velocimetry system(PIV)was utilized to record the spray field with the downwash airflow field at different rotational speeds of rotors(0-1800 r/min)or different nozzle positions(0,0.20 m,0.35 m,and 0.50 m from the motor).The simulation and experimental results showed that the rotor downwash airflow field exhibited the‘dispersion-shrinkage-redispersion’development rule.In the initial dispersion stage of rotor airflow,there were obvious high-vorticity and low-vorticity regions in the rotor downwash airflow field.Moreover,the low-vorticity region was primarily concentrated below the motor,and the high-vorticity region was mainly focused in the middle area of the rotors.Additionally,the Y-direction airflow velocity fluctuated at 0.4-1.2 m under the rotor.When the rotor airflow developed to 3.2 m below the rotor,the Y-direction airflow velocity showed a slight decrease.Above 3.2 m from the rotor,the Y-direction airflow velocity started to drastically decrease.Therefore,it is recommended that the DJI T30 plant protection UAV should not exceed 3.2 m in flight height during field spraying operations.The rotor downwash airflow field caused the nozzle atomization angle,droplet concentration,and spray field width to decrease while increasing the vortex scale in the spray field when the rotor system was activated.Moreover,the increase in rotor rotational speed promoted the abovementioned trend.When the nozzle was installed in various radial locations below the rotor,the droplet spatial distribution and velocity distribution were completely different.When the nozzle was installed directly below the motor,the droplet spatial distribution and velocity distribution were relatively symmetrical.When the nozzle was installed at 0.20 m and 0.35 m from the motor,the droplets clearly moved toward the right under the induction of stronger rotor vortices.This resulted in a higher droplet concentration in the right-half spray field.However,the droplet moved toward the left when the nozzle was installed in the rotor tip.For four nozzle positions,when the nozzle was installed at 0 or 0.20 m from the motor,the droplet average velocity was much higher.However,the droplet average velocity was slower when the nozzle was installed in the other two positions.Therefore,it is recommended that the nozzle is installed at 0 or 0.20 m from the motor.The research results could increase the understanding of the downwash airflow field distribution characteristics of the UAV and its influence on the droplet spatial distribution and velocity distribution characteristics.Meanwhile,the research results could provide some theoretical guidance for the choice of nozzle position below the rotor.
基金supported by the Key R&D Program of Shandong Province, China (No. 2023ZLYS01)the National Natural Science Foundation of China (Nos. 91730304 and 41575026)+3 种基金the National Key Research and Development Plan Project (No. 2022 YFC3104200)the Major Innovation Special Project of Qilu University of Technology (Shandong Academy of Sciences) Science Education Industry Integration Pilot Project (No. 2023HYZX01)the ‘Taishan Scholars’ Construction Projectthe Special funds of Laoshan Laboratory
文摘The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.
文摘Single-pulse and multi-pulse damage behaviors of "standard" (with A/4 stack structure) and "modified" (with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs, 800-nm Ti:sapphire laser system. Precise morphologies of damaged sites display strikingly different features when the samples are subjected to various number of incident pulses, which are explained reasonably by the standing-wave field distribution within the coatings. Meanwhile, the single-pulse laser-induced damage threshold of the "standard" mirror is improved by about 14% while suppressing the normalized electric field intensity at the outmost interface of the HfO2 and SiO2 layers by 37%. To discuss the damage mechanism, a theoretical model based on photoionization, avalanche ionization, and decays of electrons is adopted to simulate the evolution curves of the conduction-band electron densitv during r^ulse dHratian.
基金Supported by National Natural Science Fundation of China
文摘The image features, such as enhancements, shadows and lateral shadows, posterior to a tumor in a B-Mode diagnostic ultrasonography, are studied. The tumor is simplified as a homogeneous cylinder in an inhomogeneous medium. Using the ray theory we derive the intensity in the region behind the cylinder. Taking the influences of sound attenuation and the time gain compensation of the B-Mode displyer into acount , we simulate with a computer five images corresponding to our experiments conducted with a tissue equivalent phantom. The theoratical images seem to be in good qualitative agreement with the experimental results.
文摘The mechanism of magnetic nanoparticles(MNPs)affecting magnetic field uniformity is studied in this work.The spatial distribution of MNPs in liquid is simulated based on Monte Carlo method.The induced field of the single MNP is combined with the magnetic field distribution of magnetofluid.In the simulation,magnetic field uniformity is described by a statistical distribution.As the chemical shift(CS)and full width at half maximum(FWHM)of magnetic resonance(MR)spectrum can reflect the uniformity of magnetic field,the simulation is verified by spectrum experiment.Simulation and measurement results prove that the CS and FWHM of the MR spectrum are basically positively correlated with the concentration of MNPs and negatively correlated with the temperature.The research results can explain how MNPs play a role in MR by affecting the uniform magnetic field,which is of great significance in improving the temperature measurement accuracy of magnetic nanothermometers and the spatial resolution of magnetic particle imaging.
基金Supported by National Natural Science Foundation of China(91026001)
文摘In a superconducting CH (cross bar H mode) cavity, the method of regulating the length of a drift tube is employed to adjust the distribution of the accelerating field. In this article, we simulate the electromagnetic field of a CH structure to illustrate the reason for adjusting the field distribution by varying drift tube length. Meanwhile, that the presence of the drift tube will cause a sharp rise in the maximum electric field is also shown. This phenomenon is contrary to superconducting cavity design principles in which the cavity geometry needs to be optimized to reduce the maximum electric field to avoid field emission. We propose a variable diameter superconducting CH cavity design to solve this conflict. The simulation of the variable diameter superconducting CH cavity shows that this method is feasible.
文摘An analytical model of the electric field distributions of buried superjunction structures,based on the charge superposition method and Green's function approach,is derived.An accurate approximation of the exact analytical model of the vertical electric field is also proposed and demonstrated by numerical simulation.The influence of the dimension and doping concentration of each layer on the electric field is discussed in detail,and the breakdown voltage is demonstrated by simulations.