The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and...The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.展开更多
ZnO nanosheets with thickness of a few nanometers are prepared by vapor transport and condensation method, and their structure and optical properties are well characterized. Field effect transistor (FET) and ultravi...ZnO nanosheets with thickness of a few nanometers are prepared by vapor transport and condensation method, and their structure and optical properties are well characterized. Field effect transistor (FET) and ultraviolet (UV) sensors are fabricated based on the ZnO nanosheets. Due to the peculiar structure of nanosheet, the FET shows n-type enhanced mode behavior and high electrical performance, and its field-effect mobility and on/off cur- rent ratio can reach 256 cm2/(V.s) and ~10^8, respectively. Moreover, the response of UV sensors can also be remarkably improved to ~3 × 10^8. The results make the ZnO nanosheets be a good material for the applications in nanoelectronic and optoelectronic devices.展开更多
As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and l...As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.展开更多
Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can...Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can produce a significant effect on the photodetachment of negative ion near a metal surface. Besides the closed orbits previously found by Duet al. for the H in the electric field near a metal surface (J. Phys. B 43 035002 (2010)), some additional closed orbits are produced due to the effect of magnetic field. For a given ion surface distance and an electric field strength, the cross section depends sensitively on the magnetic field strength. As the magnetic field strength is very small, its influence can be neglected. With the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillation in the cross section becomes much more complex. Therefore we can control the photodetachment cross section of the negative ion by changing the magnetic field strength. We hope that our results may guide future experimental studies for the photodetachment process of negative ion in the presence of external fields and surfaces.展开更多
The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is t...The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is the preparation of titanium dioxide materials by sol-gel method using Ti(OBu)_4 as the precursor.In this study,we fabricated a nano-titanium dioxide sensing layer on the ITO glass by dip coating.In order to examine the sensitivity of the nano-TiO_2 films applied to the EGFET devices,we adopted the ITO glass as substrate,and measured theⅠ_(DS)-Ⅴ_G curves of the nano-titanium dioxide separative structure EGFET device in the pH buffer solutions that have different pH values by the Keithley 236 Instrument.By the experimental results,we can obtain the pH sensitivities of the EGFET with nano-TiO_2 sensing membrane prepared by sol-gel method,which is 59.86mV/pH from pH 1 to pH 9.展开更多
We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT p...We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT powder,Ag powder,silicagel,the di-n-butyl phthalate and the toluene solvents by appropriate ratio,then immobilized on the silicon substrate to form the carbon nanotube sensing layer.We measured theⅠ_(DS)-Ⅴ_G curves of the carbon nanotube separative structure EGFET device in the different pH buffer solutions by the Keithley 236Ⅰ-Ⅴmeasurement system.According to the experimental results,we can obtain the pH sensitivities of the carbon nanotube separative structure EGFET device,which is 62.54mV/pH from pH1 to pH13.展开更多
The photo-dissociation dynamics of LiF is investigated with newly constructed accurate ab initio potential energy curves (PECs) using the time-dependent quantum wave packet method. The oscillations and decay of the ...The photo-dissociation dynamics of LiF is investigated with newly constructed accurate ab initio potential energy curves (PECs) using the time-dependent quantum wave packet method. The oscillations and decay of the wave packet on the adiabats as a function of time are given, which can be compared with the femtosecond transition-state (FTS) spectroscopy. The photo-absorption spectra and the kinetic-energy distribution of the dissociation fragments, which can exhibit the vibration-level structure and the dispersion of the wave packet, respectively, are also obtained. The investigation shows a blue shift of the band center for the photo-absorption spectrum and multiple peaks in the kinetic-energy spectrum with increasing laser intensity, which can be attributed to external field effects. By analyzing the oscillations of the wave packet evolving on the upper adiabat, an approximate inversion scheme is devised to roughly deduce its shape.展开更多
We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then ...We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.展开更多
In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and ...In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and characterized by photoluminescence spectra(PL),x-ray diffraction(XRD),and x-ray photoelectron spectroscopy(XPS).With PCBM layers,the current–voltage hysteresis phenomenon is effetely inhibited,and both the transfer and output current values increase.The band energy diagrams are proposed,which indicate that the electrons are transferred into the PCBM layer,resulting in the increase of photocurrent.The electron mobility and hole mobility are extracted from the transfer curves,which are about one order of magnitude as large as those of PCBM deposited,which is the reason why the electrons are transferred into the PCBM layer and the holes are still in the perovskites,and the effects of ionized impurity scattering on carrier transport become smaller.展开更多
A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferr...A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferroelectric poly(vinylidene fluoride-trifluoroethylene)(P(VDF-Tr FE)). We overcame the interfacial layer problem by incorporating P(VDF-Tr FE) as a ferroelectric gate using a low-temperature fabrication process. Our memory devices exhibited excellent memory characteristics with a low programming voltage of ±5 V, a large modulation in channel conductance between ON and OFF states exceeding 105, a long retention time greater than 3 9 104 s, and a high endurance of over 105 programming cycles while maintaining an ION/IOFFratio higher than 102.展开更多
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is o...The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.展开更多
The advantages of the extended gate field effect transistor (EGFET) compared with the ion sensitive field effect transistor (ISFET) are easy package,easy preservation,insensitive light effect,and better stability.Al...The advantages of the extended gate field effect transistor (EGFET) compared with the ion sensitive field effect transistor (ISFET) are easy package,easy preservation,insensitive light effect,and better stability.Although EGFET has above advantages,there are still some non-ideal effects such as drift etc..The drift behavior exists during the measurement process and results in the variation of the output voltage with time.We can obtain the drift value by immersing EGFET into the pH solution for 12 hours and measure the rate of the output voltage versus time after S hours.This study analyzes the sensitivity, stability,and drift effect of the EGFET based on the structure of the ruthenium oxide/silicon (RuO_x/Si) wafer for measuring the potassium ion.The fabrication of the potassium ion sensor can be widely employed in medical detection.展开更多
Styrene was polymerized in supercritical (sc) CO2 with benzoyl peroxide (BPO) as initiator. It was found that the polymerization was accelerated by the external magnetic field.
In situ FTIR spectroscopy was utilized to investigate the magnetic field effect on the heterogeneous photocatalytic degradation of benzene over platinized titania (Pt/TiO2). The results revealed that the employment ...In situ FTIR spectroscopy was utilized to investigate the magnetic field effect on the heterogeneous photocatalytic degradation of benzene over platinized titania (Pt/TiO2). The results revealed that the employment of magnetic field may not change the mechanism of photocatalytic degradation of benzene, however, it greatly facilitate the conversion of benzene to phenol and quinone, as well as the transformation from phenol to quinone, resulting in opening the benzene ring easily and promoting the production of CO2.展开更多
The temperature-dependent effect of residual charge carrier (no), at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7nm TiO2 as the top-gate ...The temperature-dependent effect of residual charge carrier (no), at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7nm TiO2 as the top-gate dielectric. The temperature-dependent gate voltage-drain current and room temperature gate capacitance are measured to extract the carrier mobility and to estimate the quantum capacitance of the GFET. The device shows the mobility value of gOO cm^2 /V.s at room temperature and it decreases to 45 cm^2 /V.s for 20 K due to the increase of n0. These results indicate that the phonon scattering is not the dominant process for the unevenness dielectric layer while the coulomb scattering by charged impurities degrades the device characteristically at low temperature.展开更多
An extended-gate field effect transistor (EGFET)of SnO_2/ITO glass was applied to manufacture the vitamin C sensor.Therefore,we immobilized the ascorbate oxidase with 3-glycidoxypropyltrimethoxysilane (GPTS)method to ...An extended-gate field effect transistor (EGFET)of SnO_2/ITO glass was applied to manufacture the vitamin C sensor.Therefore,we immobilized the ascorbate oxidase with 3-glycidoxypropyltrimethoxysilane (GPTS)method to measure the different concentrations of the vitamin C solution in an optimum measurement environment.In order to find the best measurement conditions of the biosensor,we studied the vitamin C sensor in different pH values of the phosphate buffer solution (PBS).Additionally,we used experimental results to discuss the response time and response voltage to compare vitamin C with orange juice for the vitamin C sensor.展开更多
We report a novel structure of A1GaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair- doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped inte...We report a novel structure of A1GaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair- doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped interlayers, the mobility of 2DEG increases by twice for the conventional structure under 5 K due to the improved crystalline quality of the conduction channel. The proposed HFET shows a four orders lower off-state leakage current, resulting in a much higher on/off ratio ( - 10^9). Further temperature-dependent performance of Schottky diodes revealed that the inhibition of shallow surface traps in proposed HFETs should be the main reason for the suppression of leakage current.展开更多
Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal...Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal semiconductor field effect transistors (MESFETs). An accurate analytical model of threshold voltage shift for the asymmetric short channel 4H-SiC MESFET is presented and thus verified. According to the presented model, it analyses the threshold voltage for short channel device on the L/a (channel length/channel depth) ratio, drain applied voltage VDS and channel doping concentration ND, thus providing a good basis for the design and modelling of short channel 4H-SiC MESFETs device.展开更多
This paper proposes an effective method of fabricating top contact organic field effect transistors by using a pho- tolithographic process. The semiconductor layer is protected by a passivation layer. Through photolit...This paper proposes an effective method of fabricating top contact organic field effect transistors by using a pho- tolithographic process. The semiconductor layer is protected by a passivation layer. Through photolithographic and etching processes, parts of the passivation layer are etched off to form source/drain electrode patterns. Combined with conventional evaporation and lift-off techniques, organic field effect transistors with a top contact are fabricated suc- cessfully, whose properties are comparable to those prepared with the shadow mask method and one order of magnitude higher than the bottom contact devices fabricated by using a photolithographic process.展开更多
Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observ...Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observed and the characteristic metal-insulator transition temperature Tp was also shifted. The changes of both the resistance and Tp, suggest that the electric field induced not only tuning of the carrier density but also rebalancing of the phase separation states. The change of the charge-ordered insulating phase fraction was estimated to be temperature dependent, and a maximum of 16% was achieved in the phase separation regime. This tuning effect was partially irreversible, which might be due to an oxygen vacancy migration that is driven by the huge applied electric field.展开更多
基金the National Natural Science Foundation of China(U21A20497)Singapore National Research Foundation Investigatorship(Grant No.NRF-NRFI08-2022-0009)。
文摘The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.
文摘ZnO nanosheets with thickness of a few nanometers are prepared by vapor transport and condensation method, and their structure and optical properties are well characterized. Field effect transistor (FET) and ultraviolet (UV) sensors are fabricated based on the ZnO nanosheets. Due to the peculiar structure of nanosheet, the FET shows n-type enhanced mode behavior and high electrical performance, and its field-effect mobility and on/off cur- rent ratio can reach 256 cm2/(V.s) and ~10^8, respectively. Moreover, the response of UV sensors can also be remarkably improved to ~3 × 10^8. The results make the ZnO nanosheets be a good material for the applications in nanoelectronic and optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Nos.61521064,61522408,61574169,6 1334007,61474136,61574166)the Ministry of Science andTechnology of China(Nos.2016YFA0201803,2016YFA0203800,2017YFB0405603)+2 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Nos.QYZDB-SSWJSC048,QYZDY-SSW-JSC001)the Beijing Municipal Science and Technology Project(No.Z171100002017011)the Opening Project of the Key Laboratory of Microelectronic Devices&Integration Technology,Institute of Microelectronics of Chinese Academy of Sciences
文摘As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074104 and 10604045)the University Science and Technology Planning Program of Shandong Province of China (Grant No. J09LA02)
文摘Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can produce a significant effect on the photodetachment of negative ion near a metal surface. Besides the closed orbits previously found by Duet al. for the H in the electric field near a metal surface (J. Phys. B 43 035002 (2010)), some additional closed orbits are produced due to the effect of magnetic field. For a given ion surface distance and an electric field strength, the cross section depends sensitively on the magnetic field strength. As the magnetic field strength is very small, its influence can be neglected. With the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillation in the cross section becomes much more complex. Therefore we can control the photodetachment cross section of the negative ion by changing the magnetic field strength. We hope that our results may guide future experimental studies for the photodetachment process of negative ion in the presence of external fields and surfaces.
文摘The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is the preparation of titanium dioxide materials by sol-gel method using Ti(OBu)_4 as the precursor.In this study,we fabricated a nano-titanium dioxide sensing layer on the ITO glass by dip coating.In order to examine the sensitivity of the nano-TiO_2 films applied to the EGFET devices,we adopted the ITO glass as substrate,and measured theⅠ_(DS)-Ⅴ_G curves of the nano-titanium dioxide separative structure EGFET device in the pH buffer solutions that have different pH values by the Keithley 236 Instrument.By the experimental results,we can obtain the pH sensitivities of the EGFET with nano-TiO_2 sensing membrane prepared by sol-gel method,which is 59.86mV/pH from pH 1 to pH 9.
文摘We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT powder,Ag powder,silicagel,the di-n-butyl phthalate and the toluene solvents by appropriate ratio,then immobilized on the silicon substrate to form the carbon nanotube sensing layer.We measured theⅠ_(DS)-Ⅴ_G curves of the carbon nanotube separative structure EGFET device in the different pH buffer solutions by the Keithley 236Ⅰ-Ⅴmeasurement system.According to the experimental results,we can obtain the pH sensitivities of the carbon nanotube separative structure EGFET device,which is 62.54mV/pH from pH1 to pH13.
基金the International Cooperation Program for Excellent Lectures of 2008 by Shandong Provincial Education Department,Chinathe National Natural Science Foundation of China(Grant No.11074151)Fundao para a Ciência e a Tecnologia,Portugal
文摘The photo-dissociation dynamics of LiF is investigated with newly constructed accurate ab initio potential energy curves (PECs) using the time-dependent quantum wave packet method. The oscillations and decay of the wave packet on the adiabats as a function of time are given, which can be compared with the femtosecond transition-state (FTS) spectroscopy. The photo-absorption spectra and the kinetic-energy distribution of the dissociation fragments, which can exhibit the vibration-level structure and the dispersion of the wave packet, respectively, are also obtained. The investigation shows a blue shift of the band center for the photo-absorption spectrum and multiple peaks in the kinetic-energy spectrum with increasing laser intensity, which can be attributed to external field effects. By analyzing the oscillations of the wave packet evolving on the upper adiabat, an approximate inversion scheme is devised to roughly deduce its shape.
文摘We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.
基金Project supported by the National Natural Science Foundation of China(Grant No.51602241)the China Postdoctoral Science Foundation(Grant No.2016M592754)
文摘In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and characterized by photoluminescence spectra(PL),x-ray diffraction(XRD),and x-ray photoelectron spectroscopy(XPS).With PCBM layers,the current–voltage hysteresis phenomenon is effetely inhibited,and both the transfer and output current values increase.The band energy diagrams are proposed,which indicate that the electrons are transferred into the PCBM layer,resulting in the increase of photocurrent.The electron mobility and hole mobility are extracted from the transfer curves,which are about one order of magnitude as large as those of PCBM deposited,which is the reason why the electrons are transferred into the PCBM layer and the holes are still in the perovskites,and the effects of ionized impurity scattering on carrier transport become smaller.
基金supported by Center for BioNano Health-Guardfunded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea as a Global Frontier Project (HGUARD_2013M3A6B2)
文摘A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferroelectric poly(vinylidene fluoride-trifluoroethylene)(P(VDF-Tr FE)). We overcame the interfacial layer problem by incorporating P(VDF-Tr FE) as a ferroelectric gate using a low-temperature fabrication process. Our memory devices exhibited excellent memory characteristics with a low programming voltage of ±5 V, a large modulation in channel conductance between ON and OFF states exceeding 105, a long retention time greater than 3 9 104 s, and a high endurance of over 105 programming cycles while maintaining an ION/IOFFratio higher than 102.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB921900 and 2014CB920900the National Natural Science Foundation of China under Grant No 11374021)(S.Yan,Z.Xie,J.-H,Chen)+1 种基金support from the Elemental Strategy Initiative conducted by the MEXT,Japana Grant-in-Aid for Scientific Research on Innovative Areas"Science of Atomic Layers"from JSPS
文摘The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.
文摘The advantages of the extended gate field effect transistor (EGFET) compared with the ion sensitive field effect transistor (ISFET) are easy package,easy preservation,insensitive light effect,and better stability.Although EGFET has above advantages,there are still some non-ideal effects such as drift etc..The drift behavior exists during the measurement process and results in the variation of the output voltage with time.We can obtain the drift value by immersing EGFET into the pH solution for 12 hours and measure the rate of the output voltage versus time after S hours.This study analyzes the sensitivity, stability,and drift effect of the EGFET based on the structure of the ruthenium oxide/silicon (RuO_x/Si) wafer for measuring the potassium ion.The fabrication of the potassium ion sensor can be widely employed in medical detection.
基金This work is financially supported by National Key Basic Research Project(G2000048010)the National Natural Science Foundation of China for financial support(29725308).
文摘Styrene was polymerized in supercritical (sc) CO2 with benzoyl peroxide (BPO) as initiator. It was found that the polymerization was accelerated by the external magnetic field.
基金This work was supported financially by the National Natural Science Foundation of China(No.20133010)Education Department of Fujian(No.JB04238).
文摘In situ FTIR spectroscopy was utilized to investigate the magnetic field effect on the heterogeneous photocatalytic degradation of benzene over platinized titania (Pt/TiO2). The results revealed that the employment of magnetic field may not change the mechanism of photocatalytic degradation of benzene, however, it greatly facilitate the conversion of benzene to phenol and quinone, as well as the transformation from phenol to quinone, resulting in opening the benzene ring easily and promoting the production of CO2.
文摘The temperature-dependent effect of residual charge carrier (no), at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7nm TiO2 as the top-gate dielectric. The temperature-dependent gate voltage-drain current and room temperature gate capacitance are measured to extract the carrier mobility and to estimate the quantum capacitance of the GFET. The device shows the mobility value of gOO cm^2 /V.s at room temperature and it decreases to 45 cm^2 /V.s for 20 K due to the increase of n0. These results indicate that the phonon scattering is not the dominant process for the unevenness dielectric layer while the coulomb scattering by charged impurities degrades the device characteristically at low temperature.
文摘An extended-gate field effect transistor (EGFET)of SnO_2/ITO glass was applied to manufacture the vitamin C sensor.Therefore,we immobilized the ascorbate oxidase with 3-glycidoxypropyltrimethoxysilane (GPTS)method to measure the different concentrations of the vitamin C solution in an optimum measurement environment.In order to find the best measurement conditions of the biosensor,we studied the vitamin C sensor in different pH values of the phosphate buffer solution (PBS).Additionally,we used experimental results to discuss the response time and response voltage to compare vitamin C with orange juice for the vitamin C sensor.
基金supported by the National Natural Science Foundation of China(Grant Nos.51177175 and 61274039)the National Basic Research Project of China(Grant Nos.2010CB923200 and 2011CB301903)+4 种基金the Ph.D.Program Foundation of Ministry of Education of China(Grant No.20110171110021)the International Sci.&Tech.Collaboration Program of China(Grant No.2012DFG52260)the National High-tech R&D Program of China(Grant No.2014AA032606)the Science and Technology Plan of Guangdong Province,China(Grant No.2013B010401013)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics(Grant No.IOSKL2014KF17)
文摘We report a novel structure of A1GaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair- doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped interlayers, the mobility of 2DEG increases by twice for the conventional structure under 5 K due to the improved crystalline quality of the conduction channel. The proposed HFET shows a four orders lower off-state leakage current, resulting in a much higher on/off ratio ( - 10^9). Further temperature-dependent performance of Schottky diodes revealed that the inhibition of shallow surface traps in proposed HFETs should be the main reason for the suppression of leakage current.
基金Project partly supported by National Defense Basic Research Program of China (Grant No 51327010101)
文摘Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal semiconductor field effect transistors (MESFETs). An accurate analytical model of threshold voltage shift for the asymmetric short channel 4H-SiC MESFET is presented and thus verified. According to the presented model, it analyses the threshold voltage for short channel device on the L/a (channel length/channel depth) ratio, drain applied voltage VDS and channel doping concentration ND, thus providing a good basis for the design and modelling of short channel 4H-SiC MESFETs device.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2011CB808404 and 2009CB939703)the National Natural Science Foundation of China (Grant Nos. 10974074,90607022,60676001,60676008,and 60825403)
文摘This paper proposes an effective method of fabricating top contact organic field effect transistors by using a pho- tolithographic process. The semiconductor layer is protected by a passivation layer. Through photolithographic and etching processes, parts of the passivation layer are etched off to form source/drain electrode patterns. Combined with conventional evaporation and lift-off techniques, organic field effect transistors with a top contact are fabricated suc- cessfully, whose properties are comparable to those prepared with the shadow mask method and one order of magnitude higher than the bottom contact devices fabricated by using a photolithographic process.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00106 and 2014CB921401)the National Natural Science Foundation of China(Grant Nos.11174342,9131208,and 11374344)
文摘Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observed and the characteristic metal-insulator transition temperature Tp was also shifted. The changes of both the resistance and Tp, suggest that the electric field induced not only tuning of the carrier density but also rebalancing of the phase separation states. The change of the charge-ordered insulating phase fraction was estimated to be temperature dependent, and a maximum of 16% was achieved in the phase separation regime. This tuning effect was partially irreversible, which might be due to an oxygen vacancy migration that is driven by the huge applied electric field.