A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipm...A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipment both in shallow and deep seas,under noisy conditions.The main features of this method are as follows:(1)a standard current source on the water surface,which can be towed by a vehicle,consisting of two electrodes,a signal generator,and a GPS unit;(2)measurement of the extremely low frequency(ELF)electric field emitted by the current source,made possible by electric field sensors on the underwater equipment;(3)position of the underwater equipment is estimated in real time based on a progressive update extended Kalman filter(PUEKF),which is carried out using the propagation model of an ELF electric field because the electric field at the position of the underwater equipment and the current source position are known.We verified the accuracy of our method and confirmed real-time location feasibility through numerical,physical scale,and real-time sea experiments.Through numerical experiments,we verified that our method works for underwater equipment location in real-world conditions,and the location error can be less than 0.2 m.Next,real-time location experiments for stationary underwater measuring equipment in water tank were conducted.The result shows that the location error can be less than 0.1 m.We also confirmed real-time location feasibility through the use of offshore experiment.We expect that our method will complement conventional underwater acoustic location methods for underwater equipment in acoustically noisy environments.展开更多
This paper describes coating protection of production facilities of offshore oil fields based on the practice of development of Bohai Offshore Oil Field, with focus laid on the selection of coating systems, surface pr...This paper describes coating protection of production facilities of offshore oil fields based on the practice of development of Bohai Offshore Oil Field, with focus laid on the selection of coating systems, surface preparation, coating application, as well as coating inspection for four types of major production facilities.展开更多
A mobile in-situ testing equipment used to detect geotechnical thermophysical properties was developed. The equipment is composed of a heat pump, frequency pumps, an electric tee joint regulator valve, some sensors, a...A mobile in-situ testing equipment used to detect geotechnical thermophysical properties was developed. The equipment is composed of a heat pump, frequency pumps, an electric tee joint regulator valve, some sensors, an electric control system, data acquisition and control system, which can do tests under the condition of extracting and storing subsurface heat. Applying the line source and the cylinder source heat transfer model, and combining the parameters estimation, the average thermophysieal property parameters of rock and soil will be calculated, which provides the basis for designing the ground source heat pump systems.展开更多
There are several well-established methods for obtaining beach profiles, and more accurate and precise high-tech methods are emerging. Traditional low-cost methods requiring minimal user skill or training are still po...There are several well-established methods for obtaining beach profiles, and more accurate and precise high-tech methods are emerging. Traditional low-cost methods requiring minimal user skill or training are still popular among professionals, scientists, and coastal zone management practitioners. Simple methods are being developed with a primary focus on sand and gravel beaches. This paper describes a simple, low-cost, manual field method for measuring profiles of beaches, which is particularly suitable for muddy shores. The equipment is a type of flexible U-tube manometer that uses liquid columns in vertical tubes to measure differences in elevation; the supporting frame is constructed from wooden poles with base disks, which hold measuring scales and a PVC tube. The structure was trialed on a mudflat characterized by a 20~0-cm-thick surface layer of silt and clay, located at the Kutubdia Island, Bangladesh. The study results are discussed with notes on the method's applicability, advantages and limitations, and several optional modifications for different scenarios for routine profiling of muddy shores. The equipment can be used by one person or two people, and the accuracy of the method is comparable to those in other methods. The equipment can also be used on sandy or gravel beaches.展开更多
基金supported by the Youth Foundation of the National Natural Science Foundation of China(Grant No.51509252)。
文摘A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipment both in shallow and deep seas,under noisy conditions.The main features of this method are as follows:(1)a standard current source on the water surface,which can be towed by a vehicle,consisting of two electrodes,a signal generator,and a GPS unit;(2)measurement of the extremely low frequency(ELF)electric field emitted by the current source,made possible by electric field sensors on the underwater equipment;(3)position of the underwater equipment is estimated in real time based on a progressive update extended Kalman filter(PUEKF),which is carried out using the propagation model of an ELF electric field because the electric field at the position of the underwater equipment and the current source position are known.We verified the accuracy of our method and confirmed real-time location feasibility through numerical,physical scale,and real-time sea experiments.Through numerical experiments,we verified that our method works for underwater equipment location in real-world conditions,and the location error can be less than 0.2 m.Next,real-time location experiments for stationary underwater measuring equipment in water tank were conducted.The result shows that the location error can be less than 0.1 m.We also confirmed real-time location feasibility through the use of offshore experiment.We expect that our method will complement conventional underwater acoustic location methods for underwater equipment in acoustically noisy environments.
文摘This paper describes coating protection of production facilities of offshore oil fields based on the practice of development of Bohai Offshore Oil Field, with focus laid on the selection of coating systems, surface preparation, coating application, as well as coating inspection for four types of major production facilities.
基金Supported by Special Project of Public Sector Funding for Scientific Research,Ministry of Land and Resources,China(No.200811066)
文摘A mobile in-situ testing equipment used to detect geotechnical thermophysical properties was developed. The equipment is composed of a heat pump, frequency pumps, an electric tee joint regulator valve, some sensors, an electric control system, data acquisition and control system, which can do tests under the condition of extracting and storing subsurface heat. Applying the line source and the cylinder source heat transfer model, and combining the parameters estimation, the average thermophysieal property parameters of rock and soil will be calculated, which provides the basis for designing the ground source heat pump systems.
文摘There are several well-established methods for obtaining beach profiles, and more accurate and precise high-tech methods are emerging. Traditional low-cost methods requiring minimal user skill or training are still popular among professionals, scientists, and coastal zone management practitioners. Simple methods are being developed with a primary focus on sand and gravel beaches. This paper describes a simple, low-cost, manual field method for measuring profiles of beaches, which is particularly suitable for muddy shores. The equipment is a type of flexible U-tube manometer that uses liquid columns in vertical tubes to measure differences in elevation; the supporting frame is constructed from wooden poles with base disks, which hold measuring scales and a PVC tube. The structure was trialed on a mudflat characterized by a 20~0-cm-thick surface layer of silt and clay, located at the Kutubdia Island, Bangladesh. The study results are discussed with notes on the method's applicability, advantages and limitations, and several optional modifications for different scenarios for routine profiling of muddy shores. The equipment can be used by one person or two people, and the accuracy of the method is comparable to those in other methods. The equipment can also be used on sandy or gravel beaches.