针对某内燃叉车最高速排气噪声过大的问题,利用Fluent软件对排气消声器内流场进行了计算,并通过建立内流场数据与声学网格间的耦合关系,在声学仿真软件中计算得出了排气消声器在流场和温度场同时作用下的传递损失;依据声学仿真结果,针...针对某内燃叉车最高速排气噪声过大的问题,利用Fluent软件对排气消声器内流场进行了计算,并通过建立内流场数据与声学网格间的耦合关系,在声学仿真软件中计算得出了排气消声器在流场和温度场同时作用下的传递损失;依据声学仿真结果,针对内燃叉车排气消声器消声能力的不足,进行了改进设计和仿真计算,并通过内燃叉车排气噪声试验验证了排气消声器的改进效果。研究结果表明,改进后的排气消声器使内燃叉车排气噪声下降3.07 d B(A);气流流速的增大和温度的升高会使消声器的传递损失曲线向高频方向移动,且随着频率的增大偏移量变大,同时高频处的传递损失也有所增大。展开更多
文摘针对某内燃叉车最高速排气噪声过大的问题,利用Fluent软件对排气消声器内流场进行了计算,并通过建立内流场数据与声学网格间的耦合关系,在声学仿真软件中计算得出了排气消声器在流场和温度场同时作用下的传递损失;依据声学仿真结果,针对内燃叉车排气消声器消声能力的不足,进行了改进设计和仿真计算,并通过内燃叉车排气噪声试验验证了排气消声器的改进效果。研究结果表明,改进后的排气消声器使内燃叉车排气噪声下降3.07 d B(A);气流流速的增大和温度的升高会使消声器的传递损失曲线向高频方向移动,且随着频率的增大偏移量变大,同时高频处的传递损失也有所增大。